rework extras tab to use script system

This commit is contained in:
AUTOMATIC 2023-01-23 09:24:43 +03:00
parent 68303c96e5
commit b5230197a6
13 changed files with 670 additions and 459 deletions

View File

@ -104,11 +104,6 @@ function create_tab_index_args(tabId, args){
return res return res
} }
function get_extras_tab_index(){
const [,,...args] = [...arguments]
return [get_tab_index('mode_extras'), get_tab_index('extras_resize_mode'), ...args]
}
function get_img2img_tab_index() { function get_img2img_tab_index() {
let res = args_to_array(arguments) let res = args_to_array(arguments)
res.splice(-2) res.splice(-2)

View File

@ -11,10 +11,9 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest from secrets import compare_digest
import modules.shared as shared import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
from modules.api.models import * from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.extras import run_extras
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
@ -45,10 +44,8 @@ def validate_sampler_name(name):
def setUpscalers(req: dict): def setUpscalers(req: dict):
reqDict = vars(req) reqDict = vars(req)
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1) reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2) reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
reqDict.pop('upscaler_1')
reqDict.pop('upscaler_2')
return reqDict return reqDict
def decode_base64_to_image(encoding): def decode_base64_to_image(encoding):
@ -244,7 +241,7 @@ class Api:
reqDict['image'] = decode_base64_to_image(reqDict['image']) reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock: with self.queue_lock:
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict) result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
@ -260,7 +257,7 @@ class Api:
reqDict.pop('imageList') reqDict.pop('imageList')
with self.queue_lock: with self.queue_lock:
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict) result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])

View File

@ -1,219 +1,103 @@
from __future__ import annotations
import os import os
import numpy as np
from PIL import Image from PIL import Image
from typing import Callable, List, OrderedDict, Tuple from modules import shared, images, devices, scripts, scripts_postprocessing, ui_common, generation_parameters_copypaste
from functools import partial
from dataclasses import dataclass
from modules import shared, images, devices, ui_components
from modules.shared import opts from modules.shared import opts
import modules.gfpgan_model
import modules.codeformer_model
class LruCache(OrderedDict): def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True):
@dataclass(frozen=True)
class Key:
image_hash: int
info_hash: int
args_hash: int
@dataclass
class Value:
image: Image.Image
info: str
def __init__(self, max_size: int = 5, *args, **kwargs):
super().__init__(*args, **kwargs)
self._max_size = max_size
def get(self, key: LruCache.Key) -> LruCache.Value:
ret = super().get(key)
if ret is not None:
self.move_to_end(key) # Move to end of eviction list
return ret
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
self[key] = value
while len(self) > self._max_size:
self.popitem(last=False)
cached_images: LruCache = LruCache(max_size=5)
def run_postprocessing(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc() devices.torch_gc()
shared.state.begin() shared.state.begin()
shared.state.job = 'extras' shared.state.job = 'extras'
imageArr = [] image_data = []
# Also keep track of original file names image_names = []
imageNameArr = []
outputs = [] outputs = []
if extras_mode == 1: if extras_mode == 1:
#convert file to pillow image
for img in image_folder: for img in image_folder:
image = Image.open(img) image = Image.open(img)
imageArr.append(image) image_data.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0]) image_names.append(os.path.splitext(img.orig_name)[0])
elif extras_mode == 2: elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled' assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
assert input_dir, 'input directory not selected'
if input_dir == '':
return outputs, "Please select an input directory.", ''
image_list = shared.listfiles(input_dir) image_list = shared.listfiles(input_dir)
for img in image_list: for filename in image_list:
try: try:
image = Image.open(img) image = Image.open(filename)
except Exception: except Exception:
continue continue
imageArr.append(image) image_data.append(image)
imageNameArr.append(img) image_names.append(filename)
else: else:
imageArr.append(image) assert image, 'image not selected'
imageNameArr.append(None)
image_data.append(image)
image_names.append(None)
if extras_mode == 2 and output_dir != '': if extras_mode == 2 and output_dir != '':
outpath = output_dir outpath = output_dir
else: else:
outpath = opts.outdir_samples or opts.outdir_extras_samples outpath = opts.outdir_samples or opts.outdir_extras_samples
# Extra operation definitions infotext = ''
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]: for image, name in zip(image_data, image_names):
shared.state.job = 'extras-gfpgan' shared.state.textinfo = name
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
if gfpgan_visibility < 1.0:
res = Image.blend(image, res, gfpgan_visibility)
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0:
res = Image.blend(image, res, codeformer_visibility)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
cropped = Image.new("RGB", (resize_w, resize_h))
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
res = cropped
return res
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
nonlocal upscaling_resize
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
return (image, info)
@dataclass
class UpscaleParams:
upscaler_idx: int
blend_alpha: float
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
blended_result: Image.Image = None
image_hash: str = hash(np.array(image.getdata()).tobytes())
for upscaler in params:
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
cache_key = LruCache.Key(image_hash=image_hash,
info_hash=hash(info),
args_hash=hash(upscale_args))
cached_entry = cached_images.get(cache_key)
if cached_entry is None:
res = upscale(image, *upscale_args)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
else:
res, info = cached_entry.image, cached_entry.info
if blended_result is None:
blended_result = res
else:
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
return (blended_result, info)
# Build a list of operations to run
facefix_ops: List[Callable] = []
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
upscale_ops: List[Callable] = []
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
if upscaling_resize != 0:
step_params: List[UpscaleParams] = []
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
upscale_ops.append(partial(run_upscalers_blend, step_params))
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
shared.state.textinfo = f'Processing image {image_name}'
existing_pnginfo = image.info or {} existing_pnginfo = image.info or {}
image = image.convert("RGB") pp = scripts_postprocessing.PostprocessedImage(image.convert("RGB"))
info = ""
# Run each operation on each image
for op in extras_ops:
image, info = op(image, info)
if opts.use_original_name_batch and image_name is not None: scripts.scripts_postproc.run(pp, args)
basename = os.path.splitext(os.path.basename(image_name))[0]
if opts.use_original_name_batch and name is not None:
basename = os.path.splitext(os.path.basename(name))[0]
else: else:
basename = '' basename = ''
if opts.enable_pnginfo: # append info before save infotext = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in pp.info.items() if v is not None])
image.info = existing_pnginfo
image.info["extras"] = info if opts.enable_pnginfo:
pp.image.info = existing_pnginfo
pp.image.info["postprocessing"] = infotext
if save_output: if save_output:
# Add upscaler name as a suffix. images.save_image(pp.image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=pp.info, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
# Add second upscaler if applicable.
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
if extras_mode != 2 or show_extras_results: if extras_mode != 2 or show_extras_results:
outputs.append(image) outputs.append(pp.image)
devices.torch_gc() devices.torch_gc()
return outputs, ui_components.plaintext_to_html(info), '' return outputs, ui_common.plaintext_to_html(infotext), ''
def clear_cache(): def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
cached_images.clear() """old handler for API"""
args = scripts.scripts_postproc.create_args_for_run({
"Upscale": {
"upscale_mode": resize_mode,
"upscale_by": upscaling_resize,
"upscale_to_width": upscaling_resize_w,
"upscale_to_height": upscaling_resize_h,
"upscale_crop": upscaling_crop,
"upscaler_1_name": extras_upscaler_1,
"upscaler_2_name": extras_upscaler_2,
"upscaler_2_visibility": extras_upscaler_2_visibility,
},
"GFPGAN": {
"gfpgan_visibility": gfpgan_visibility,
},
"CodeFormer": {
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
},
})
return run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output=save_output)

View File

@ -7,7 +7,7 @@ from collections import namedtuple
import gradio as gr import gradio as gr
from modules.processing import StableDiffusionProcessing from modules.processing import StableDiffusionProcessing
from modules import shared, paths, script_callbacks, extensions, script_loading from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing
AlwaysVisible = object() AlwaysVisible = object()
@ -150,8 +150,10 @@ def basedir():
return current_basedir return current_basedir
scripts_data = []
ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"]) ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
scripts_data = []
postprocessing_scripts_data = []
ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir", "module"]) ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir", "module"])
@ -190,23 +192,31 @@ def list_files_with_name(filename):
def load_scripts(): def load_scripts():
global current_basedir global current_basedir
scripts_data.clear() scripts_data.clear()
postprocessing_scripts_data.clear()
script_callbacks.clear_callbacks() script_callbacks.clear_callbacks()
scripts_list = list_scripts("scripts", ".py") scripts_list = list_scripts("scripts", ".py")
syspath = sys.path syspath = sys.path
def register_scripts_from_module(module):
for key, script_class in module.__dict__.items():
if type(script_class) != type:
continue
if issubclass(script_class, Script):
scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
elif issubclass(script_class, scripts_postprocessing.ScriptPostprocessing):
postprocessing_scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
for scriptfile in sorted(scripts_list): for scriptfile in sorted(scripts_list):
try: try:
if scriptfile.basedir != paths.script_path: if scriptfile.basedir != paths.script_path:
sys.path = [scriptfile.basedir] + sys.path sys.path = [scriptfile.basedir] + sys.path
current_basedir = scriptfile.basedir current_basedir = scriptfile.basedir
module = script_loading.load_module(scriptfile.path) script_module = script_loading.load_module(scriptfile.path)
register_scripts_from_module(script_module)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
except Exception: except Exception:
print(f"Error loading script: {scriptfile.filename}", file=sys.stderr) print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
@ -413,6 +423,7 @@ class ScriptRunner:
scripts_txt2img = ScriptRunner() scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner() scripts_img2img = ScriptRunner()
scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner()
scripts_current: ScriptRunner = None scripts_current: ScriptRunner = None
@ -423,12 +434,13 @@ def reload_script_body_only():
def reload_scripts(): def reload_scripts():
global scripts_txt2img, scripts_img2img global scripts_txt2img, scripts_img2img, scripts_postproc
load_scripts() load_scripts()
scripts_txt2img = ScriptRunner() scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner() scripts_img2img = ScriptRunner()
scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner()
def IOComponent_init(self, *args, **kwargs): def IOComponent_init(self, *args, **kwargs):

View File

@ -0,0 +1,147 @@
import os
import gradio as gr
from modules import errors, shared
class PostprocessedImage:
def __init__(self, image):
self.image = image
self.info = {}
class ScriptPostprocessing:
filename = None
controls = None
args_from = None
args_to = None
order = 1000
"""scripts will be ordred by this value in postprocessing UI"""
name = None
"""this function should return the title of the script."""
group = None
"""A gr.Group component that has all script's UI inside it"""
def ui(self):
"""
This function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be a dictionary that maps parameter names to components used in processing.
Values of those components will be passed to process() function.
"""
pass
def process(self, pp: PostprocessedImage, **args):
"""
This function is called to postprocess the image.
args contains a dictionary with all values returned by components from ui()
"""
pass
def image_changed(self):
pass
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
res = func(*args, **kwargs)
return res
except Exception as e:
errors.display(e, f"calling {filename}/{funcname}")
return default
class ScriptPostprocessingRunner:
def __init__(self):
self.scripts = None
self.ui_created = False
def initialize_scripts(self, scripts_data):
self.scripts = []
for script_class, path, basedir, script_module in scripts_data:
script: ScriptPostprocessing = script_class()
script.filename = path
self.scripts.append(script)
def create_script_ui(self, script, inputs):
script.args_from = len(inputs)
script.args_to = len(inputs)
script.controls = wrap_call(script.ui, script.filename, "ui")
for control in script.controls.values():
control.custom_script_source = os.path.basename(script.filename)
inputs += list(script.controls.values())
script.args_to = len(inputs)
def scripts_in_preferred_order(self):
if self.scripts is None:
import modules.scripts
self.initialize_scripts(modules.scripts.postprocessing_scripts_data)
scripts_order = [x.lower().strip() for x in shared.opts.postprocessing_scipts_order.split(",")]
def script_score(name):
name = name.lower()
for i, possible_match in enumerate(scripts_order):
if possible_match in name:
return i
return len(self.scripts)
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(self.scripts)}
return sorted(self.scripts, key=lambda x: script_scores[x.name])
def setup_ui(self):
inputs = []
for script in self.scripts_in_preferred_order():
with gr.Box() as group:
self.create_script_ui(script, inputs)
script.group = group
self.ui_created = True
return inputs
def run(self, pp: PostprocessedImage, args):
for script in self.scripts_in_preferred_order():
shared.state.job = script.name
script_args = args[script.args_from:script.args_to]
process_args = {}
for (name, component), value in zip(script.controls.items(), script_args):
process_args[name] = value
script.process(pp, **process_args)
def create_args_for_run(self, scripts_args):
if not self.ui_created:
with gr.Blocks(analytics_enabled=False):
self.setup_ui()
scripts = self.scripts_in_preferred_order()
args = [None] * max([x.args_to for x in scripts])
for script in scripts:
script_args_dict = scripts_args.get(script.name, None)
if script_args_dict is not None:
for i, name in enumerate(script.controls):
args[script.args_from + i] = script_args_dict.get(name, None)
return args
def image_changed(self):
for script in self.scripts_in_preferred_order():
script.image_changed()

View File

@ -474,6 +474,11 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"), 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
})) }))
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
'postprocessing_scipts_order': OptionInfo("upscale, gfpgan, codeformer", "Postprocessing operation order"),
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
}))
options_templates.update(options_section((None, "Hidden options"), { options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable those extensions"), "disabled_extensions": OptionInfo([], "Disable those extensions"),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"), "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),

View File

@ -20,7 +20,7 @@ import numpy as np
from PIL import Image, PngImagePlugin from PIL import Image, PngImagePlugin
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path from modules.paths import script_path
@ -86,7 +86,6 @@ css_hide_progressbar = """
random_symbol = '\U0001f3b2\ufe0f' # 🎲️ random_symbol = '\U0001f3b2\ufe0f' # 🎲️
reuse_symbol = '\u267b\ufe0f' # ♻️ reuse_symbol = '\u267b\ufe0f' # ♻️
paste_symbol = '\u2199\ufe0f' # ↙ paste_symbol = '\u2199\ufe0f' # ↙
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄 refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾 save_style_symbol = '\U0001f4be' # 💾
apply_style_symbol = '\U0001f4cb' # 📋 apply_style_symbol = '\U0001f4cb' # 📋
@ -95,7 +94,7 @@ extra_networks_symbol = '\U0001F3B4' # 🎴
def plaintext_to_html(text): def plaintext_to_html(text):
return ui_components.plaintext_to_html(text) return ui_common.plaintext_to_html(text)
def send_gradio_gallery_to_image(x): def send_gradio_gallery_to_image(x):
@ -103,70 +102,6 @@ def send_gradio_gallery_to_image(x):
return None return None
return image_from_url_text(x[0]) return image_from_url_text(x[0])
def save_files(js_data, images, do_make_zip, index):
import csv
filenames = []
fullfns = []
#quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it
class MyObject:
def __init__(self, d=None):
if d is not None:
for key, value in d.items():
setattr(self, key, value)
data = json.loads(js_data)
p = MyObject(data)
path = opts.outdir_save
save_to_dirs = opts.use_save_to_dirs_for_ui
extension: str = opts.samples_format
start_index = 0
if index > -1 and opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
images = [images[index]]
start_index = index
os.makedirs(opts.outdir_save, exist_ok=True)
with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
at_start = file.tell() == 0
writer = csv.writer(file)
if at_start:
writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"])
for image_index, filedata in enumerate(images, start_index):
image = image_from_url_text(filedata)
is_grid = image_index < p.index_of_first_image
i = 0 if is_grid else (image_index - p.index_of_first_image)
fullfn, txt_fullfn = save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
filename = os.path.relpath(fullfn, path)
filenames.append(filename)
fullfns.append(fullfn)
if txt_fullfn:
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
zip_filepath = os.path.join(path, "images.zip")
from zipfile import ZipFile
with ZipFile(zip_filepath, "w") as zip_file:
for i in range(len(fullfns)):
with open(fullfns[i], mode="rb") as f:
zip_file.writestr(filenames[i], f.read())
fullfns.insert(0, zip_filepath)
return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
def visit(x, func, path=""): def visit(x, func, path=""):
if hasattr(x, 'children'): if hasattr(x, 'children'):
for c in x.children: for c in x.children:
@ -444,19 +379,6 @@ def apply_setting(key, value):
opts.save(shared.config_filename) opts.save(shared.config_filename)
return getattr(opts, key) return getattr(opts, key)
def update_generation_info(generation_info, html_info, img_index):
try:
generation_info = json.loads(generation_info)
if img_index < 0 or img_index >= len(generation_info["infotexts"]):
return html_info, gr.update()
return plaintext_to_html(generation_info["infotexts"][img_index]), gr.update()
except Exception:
pass
# if the json parse or anything else fails, just return the old html_info
return html_info, gr.update()
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh(): def refresh():
refresh_method() refresh_method()
@ -477,107 +399,7 @@ def create_refresh_button(refresh_component, refresh_method, refreshed_args, ele
def create_output_panel(tabname, outdir): def create_output_panel(tabname, outdir):
def open_folder(f): return ui_common.create_output_panel(tabname, outdir)
if not os.path.exists(f):
print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
return
elif not os.path.isdir(f):
print(f"""
WARNING
An open_folder request was made with an argument that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {f}
""", file=sys.stderr)
return
if not shared.cmd_opts.hide_ui_dir_config:
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
sp.Popen(["wsl-open", path])
else:
sp.Popen(["xdg-open", path])
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
generation_info = None
with gr.Column():
with gr.Row(elem_id=f"image_buttons_{tabname}"):
open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}')
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
open_folder_button.click(
fn=lambda: open_folder(opts.outdir_samples or outdir),
inputs=[],
outputs=[],
)
if tabname != "extras":
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group():
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
if tabname == 'txt2img' or tabname == 'img2img':
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
generation_info_button.click(
fn=update_generation_info,
_js="function(x, y, z){ return [x, y, selected_gallery_index()] }",
inputs=[generation_info, html_info, html_info],
outputs=[html_info, html_info],
)
save.click(
fn=wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
],
show_progress=False,
)
save_zip.click(
fn=wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
]
)
else:
html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}')
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log
def create_sampler_and_steps_selection(choices, tabname): def create_sampler_and_steps_selection(choices, tabname):
@ -1106,86 +928,7 @@ def create_ui():
modules.scripts.scripts_current = None modules.scripts.scripts_current = None
with gr.Blocks(analytics_enabled=False) as extras_interface: with gr.Blocks(analytics_enabled=False) as extras_interface:
with gr.Row().style(equal_height=False): ui_postprocessing.create_ui()
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', elem_id="extras_single_tab"):
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab"):
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab"):
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab"):
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab"):
with gr.Group():
with gr.Row():
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with gr.Group():
extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
with gr.Group():
extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1, elem_id="extras_upscaler_2_visibility")
with gr.Group():
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan, elem_id="extras_gfpgan_visibility")
with gr.Group():
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_visibility")
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_weight")
with gr.Group():
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False, elem_id="extras_upscale_before_face_fix")
result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples)
submit.click(
fn=wrap_gradio_gpu_call(postprocessing.run_postprocessing, extra_outputs=[None, '']),
_js="get_extras_tab_index",
inputs=[
dummy_component,
dummy_component,
extras_image,
image_batch,
extras_batch_input_dir,
extras_batch_output_dir,
show_extras_results,
gfpgan_visibility,
codeformer_visibility,
codeformer_weight,
upscaling_resize,
upscaling_resize_w,
upscaling_resize_h,
upscaling_crop,
extras_upscaler_1,
extras_upscaler_2,
extras_upscaler_2_visibility,
upscale_before_face_fix,
],
outputs=[
result_images,
html_info_x,
html_info,
]
)
parameters_copypaste.add_paste_fields("extras", extras_image, None)
extras_image.change(
fn=postprocessing.clear_cache,
inputs=[], outputs=[]
)
with gr.Blocks(analytics_enabled=False) as pnginfo_interface: with gr.Blocks(analytics_enabled=False) as pnginfo_interface:
with gr.Row().style(equal_height=False): with gr.Row().style(equal_height=False):

202
modules/ui_common.py Normal file
View File

@ -0,0 +1,202 @@
import json
import html
import os
import platform
import sys
import gradio as gr
import scipy as sp
from modules import call_queue, shared
from modules.generation_parameters_copypaste import image_from_url_text
import modules.images
folder_symbol = '\U0001f4c2' # 📂
def update_generation_info(generation_info, html_info, img_index):
try:
generation_info = json.loads(generation_info)
if img_index < 0 or img_index >= len(generation_info["infotexts"]):
return html_info, gr.update()
return plaintext_to_html(generation_info["infotexts"][img_index]), gr.update()
except Exception:
pass
# if the json parse or anything else fails, just return the old html_info
return html_info, gr.update()
def plaintext_to_html(text):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
return text
def save_files(js_data, images, do_make_zip, index):
import csv
filenames = []
fullfns = []
#quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it
class MyObject:
def __init__(self, d=None):
if d is not None:
for key, value in d.items():
setattr(self, key, value)
data = json.loads(js_data)
p = MyObject(data)
path = shared.opts.outdir_save
save_to_dirs = shared.opts.use_save_to_dirs_for_ui
extension: str = shared.opts.samples_format
start_index = 0
if index > -1 and shared.opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
images = [images[index]]
start_index = index
os.makedirs(shared.opts.outdir_save, exist_ok=True)
with open(os.path.join(shared.opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
at_start = file.tell() == 0
writer = csv.writer(file)
if at_start:
writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"])
for image_index, filedata in enumerate(images, start_index):
image = image_from_url_text(filedata)
is_grid = image_index < p.index_of_first_image
i = 0 if is_grid else (image_index - p.index_of_first_image)
fullfn, txt_fullfn = modules.images.save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
filename = os.path.relpath(fullfn, path)
filenames.append(filename)
fullfns.append(fullfn)
if txt_fullfn:
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
zip_filepath = os.path.join(path, "images.zip")
from zipfile import ZipFile
with ZipFile(zip_filepath, "w") as zip_file:
for i in range(len(fullfns)):
with open(fullfns[i], mode="rb") as f:
zip_file.writestr(filenames[i], f.read())
fullfns.insert(0, zip_filepath)
return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
def create_output_panel(tabname, outdir):
from modules import shared
import modules.generation_parameters_copypaste as parameters_copypaste
def open_folder(f):
if not os.path.exists(f):
print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
return
elif not os.path.isdir(f):
print(f"""
WARNING
An open_folder request was made with an argument that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {f}
""", file=sys.stderr)
return
if not shared.cmd_opts.hide_ui_dir_config:
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
sp.Popen(["wsl-open", path])
else:
sp.Popen(["xdg-open", path])
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
generation_info = None
with gr.Column():
with gr.Row(elem_id=f"image_buttons_{tabname}"):
open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}')
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
open_folder_button.click(
fn=lambda: open_folder(shared.opts.outdir_samples or outdir),
inputs=[],
outputs=[],
)
if tabname != "extras":
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group():
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
if tabname == 'txt2img' or tabname == 'img2img':
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
generation_info_button.click(
fn=update_generation_info,
_js="function(x, y, z){ return [x, y, selected_gallery_index()] }",
inputs=[generation_info, html_info, html_info],
outputs=[html_info, html_info],
)
save.click(
fn=call_queue.wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
],
show_progress=False,
)
save_zip.click(
fn=call_queue.wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
]
)
else:
html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}')
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log

View File

@ -1,5 +1,3 @@
import html
import gradio as gr import gradio as gr
@ -50,7 +48,3 @@ class FormColorPicker(gr.ColorPicker, gr.components.FormComponent):
def get_block_name(self): def get_block_name(self):
return "colorpicker" return "colorpicker"
def plaintext_to_html(text):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
return text

View File

@ -0,0 +1,57 @@
import gradio as gr
from modules import scripts_postprocessing, scripts, shared, gfpgan_model, codeformer_model, ui_common, postprocessing, call_queue
import modules.generation_parameters_copypaste as parameters_copypaste
def create_ui():
tab_index = gr.State(value=0)
with gr.Row().style(equal_height=False, variant='compact'):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', elem_id="extras_single_tab") as tab_single:
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab") as tab_batch:
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab") as tab_batch_dir:
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
script_inputs = scripts.scripts_postproc.setup_ui()
with gr.Column():
result_images, html_info_x, html_info, html_log = ui_common.create_output_panel("extras", shared.opts.outdir_extras_samples)
tab_single.select(fn=lambda: 0, inputs=[], outputs=[tab_index])
tab_batch.select(fn=lambda: 1, inputs=[], outputs=[tab_index])
tab_batch_dir.select(fn=lambda: 2, inputs=[], outputs=[tab_index])
submit.click(
fn=call_queue.wrap_gradio_gpu_call(postprocessing.run_postprocessing, extra_outputs=[None, '']),
inputs=[
tab_index,
extras_image,
image_batch,
extras_batch_input_dir,
extras_batch_output_dir,
show_extras_results,
*script_inputs
],
outputs=[
result_images,
html_info_x,
html_info,
]
)
parameters_copypaste.add_paste_fields("extras", extras_image, None)
extras_image.change(
fn=scripts.scripts_postproc.image_changed,
inputs=[], outputs=[]
)

View File

@ -0,0 +1,36 @@
from PIL import Image
import numpy as np
from modules import scripts_postprocessing, codeformer_model
import gradio as gr
from modules.ui_components import FormRow
class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing):
name = "CodeFormer"
order = 3000
def ui(self):
with FormRow():
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, elem_id="extras_codeformer_visibility")
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
return {
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, codeformer_visibility, codeformer_weight):
if codeformer_visibility == 0:
return
restored_img = codeformer_model.codeformer.restore(np.array(pp.image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0:
res = Image.blend(pp.image, res, codeformer_visibility)
pp.image = res
pp.info["CodeFormer visibility"] = round(codeformer_visibility, 3)
pp.info["CodeFormer weight"] = round(codeformer_weight, 3)

View File

@ -0,0 +1,33 @@
from PIL import Image
import numpy as np
from modules import scripts_postprocessing, gfpgan_model
import gradio as gr
from modules.ui_components import FormRow
class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
name = "GFPGAN"
order = 2000
def ui(self):
with FormRow():
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, elem_id="extras_gfpgan_visibility")
return {
"gfpgan_visibility": gfpgan_visibility,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, gfpgan_visibility):
if gfpgan_visibility == 0:
return
restored_img = gfpgan_model.gfpgan_fix_faces(np.array(pp.image, dtype=np.uint8))
res = Image.fromarray(restored_img)
if gfpgan_visibility < 1.0:
res = Image.blend(pp.image, res, gfpgan_visibility)
pp.image = res
pp.info["GFPGAN visibility"] = round(gfpgan_visibility, 3)

View File

@ -0,0 +1,106 @@
from PIL import Image
import numpy as np
from modules import scripts_postprocessing, shared
import gradio as gr
from modules.ui_components import FormRow
upscale_cache = {}
class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
name = "Upscale"
order = 1000
def ui(self):
selected_tab = gr.State(value=0)
with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
with FormRow():
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with FormRow():
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
with FormRow():
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
tab_scale_by.select(fn=lambda: 0, inputs=[], outputs=[selected_tab])
tab_scale_to.select(fn=lambda: 1, inputs=[], outputs=[selected_tab])
return {
"upscale_mode": selected_tab,
"upscale_by": upscaling_resize,
"upscale_to_width": upscaling_resize_w,
"upscale_to_height": upscaling_resize_h,
"upscale_crop": upscaling_crop,
"upscaler_1_name": extras_upscaler_1,
"upscaler_2_name": extras_upscaler_2,
"upscaler_2_visibility": extras_upscaler_2_visibility,
}
def upscale(self, image, info, upscaler, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop):
if upscale_mode == 1:
upscale_by = max(upscale_to_width/image.width, upscale_to_height/image.height)
info["Postprocess upscale to"] = f"{upscale_to_width}x{upscale_to_height}"
else:
info["Postprocess upscale by"] = upscale_by
cache_key = (hash(np.array(image.getdata()).tobytes()), upscaler.name, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
cached_image = upscale_cache.pop(cache_key, None)
if cached_image is not None:
image = cached_image
else:
image = upscaler.scaler.upscale(image, upscale_by, upscaler.data_path)
upscale_cache[cache_key] = image
if len(upscale_cache) > shared.opts.upscaling_max_images_in_cache:
upscale_cache.pop(next(iter(upscale_cache), None), None)
if upscale_mode == 1 and upscale_crop:
cropped = Image.new("RGB", (upscale_to_width, upscale_to_height))
cropped.paste(image, box=(upscale_to_width // 2 - image.width // 2, upscale_to_height // 2 - image.height // 2))
image = cropped
info["Postprocess crop to"] = f"{image.width}x{image.height}"
return image
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0):
if upscaler_1_name == "None":
upscaler_1_name = None
upscaler1 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_1_name]), None)
assert upscaler1 or (upscaler_1_name is None), f'could not find upscaler named {upscaler_1_name}'
if not upscaler1:
return
if upscaler_2_name == "None":
upscaler_2_name = None
upscaler2 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_2_name and x.name != "None"]), None)
assert upscaler2 or (upscaler_2_name is None), f'could not find upscaler named {upscaler_2_name}'
upscaled_image = self.upscale(pp.image, pp.info, upscaler1, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
pp.info[f"Postprocess upscaler"] = upscaler1.name
if upscaler2 and upscaler_2_visibility > 0:
second_upscale = self.upscale(pp.image, pp.info, upscaler2, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
upscaled_image = Image.blend(upscaled_image, second_upscale, upscaler_2_visibility)
pp.info[f"Postprocess upscaler 2"] = upscaler2.name
pp.image = upscaled_image
def image_changed(self):
upscale_cache.clear()