add XL support for live previews: approx and TAESD

This commit is contained in:
AUTOMATIC1111 2023-07-13 17:24:54 +03:00
parent 6f23da603d
commit b8159d0919
3 changed files with 40 additions and 25 deletions

View File

@ -48,7 +48,7 @@ def extend_sdxl(model):
discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization() discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype) model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
model.is_xl = True model.is_sdxl = True
sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning

View File

@ -2,9 +2,9 @@ import os
import torch import torch
from torch import nn from torch import nn
from modules import devices, paths from modules import devices, paths, shared
sd_vae_approx_model = None sd_vae_approx_models = {}
class VAEApprox(nn.Module): class VAEApprox(nn.Module):
@ -31,19 +31,34 @@ class VAEApprox(nn.Module):
return x return x
def model(): def download_model(model_path, model_url):
global sd_vae_approx_model
if sd_vae_approx_model is None:
model_path = os.path.join(paths.models_path, "VAE-approx", "model.pt")
sd_vae_approx_model = VAEApprox()
if not os.path.exists(model_path): if not os.path.exists(model_path):
model_path = os.path.join(paths.script_path, "models", "VAE-approx", "model.pt") os.makedirs(os.path.dirname(model_path), exist_ok=True)
sd_vae_approx_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
sd_vae_approx_model.eval()
sd_vae_approx_model.to(devices.device, devices.dtype)
return sd_vae_approx_model print(f'Downloading VAEApprox model to: {model_path}')
torch.hub.download_url_to_file(model_url, model_path)
def model():
model_name = "vaeapprox-sdxl.pt" if getattr(shared.sd_model, 'is_sdxl', False) else "model.pt"
loaded_model = sd_vae_approx_models.get(model_name)
if loaded_model is None:
model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
if not os.path.exists(model_path):
model_path = os.path.join(paths.script_path, "models", "VAE-approx", model_name)
if not os.path.exists(model_path):
model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
download_model(model_path, 'https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/download/v1.0.0-pre/' + model_name)
loaded_model = VAEApprox()
loaded_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
loaded_model.eval()
loaded_model.to(devices.device, devices.dtype)
sd_vae_approx_models[model_name] = loaded_model
return loaded_model
def cheap_approximation(sample): def cheap_approximation(sample):

View File

@ -8,9 +8,9 @@ import os
import torch import torch
import torch.nn as nn import torch.nn as nn
from modules import devices, paths_internal from modules import devices, paths_internal, shared
sd_vae_taesd = None sd_vae_taesd_models = {}
def conv(n_in, n_out, **kwargs): def conv(n_in, n_out, **kwargs):
@ -61,9 +61,7 @@ class TAESD(nn.Module):
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
def download_model(model_path): def download_model(model_path, model_url):
model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth'
if not os.path.exists(model_path): if not os.path.exists(model_path):
os.makedirs(os.path.dirname(model_path), exist_ok=True) os.makedirs(os.path.dirname(model_path), exist_ok=True)
@ -72,17 +70,19 @@ def download_model(model_path):
def model(): def model():
global sd_vae_taesd model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth"
loaded_model = sd_vae_taesd_models.get(model_name)
if sd_vae_taesd is None: if loaded_model is None:
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth") model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name)
download_model(model_path) download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)
if os.path.exists(model_path): if os.path.exists(model_path):
sd_vae_taesd = TAESD(model_path) loaded_model = TAESD(model_path)
sd_vae_taesd.eval() loaded_model.eval()
sd_vae_taesd.to(devices.device, devices.dtype) loaded_model.to(devices.device, devices.dtype)
sd_vae_taesd_models[model_name] = loaded_model
else: else:
raise FileNotFoundError('TAESD model not found') raise FileNotFoundError('TAESD model not found')
return sd_vae_taesd.decoder return loaded_model.decoder