a more strict check for activation type and a more reasonable check for type of layer in hypernets
This commit is contained in:
parent
a26fc2834c
commit
c23f666dba
@ -32,10 +32,16 @@ class HypernetworkModule(torch.nn.Module):
|
||||
linears = []
|
||||
for i in range(len(layer_structure) - 1):
|
||||
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
||||
|
||||
if activation_func == "relu":
|
||||
linears.append(torch.nn.ReLU())
|
||||
if activation_func == "leakyrelu":
|
||||
elif activation_func == "leakyrelu":
|
||||
linears.append(torch.nn.LeakyReLU())
|
||||
elif activation_func == 'linear' or activation_func is None:
|
||||
pass
|
||||
else:
|
||||
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
|
||||
|
||||
if add_layer_norm:
|
||||
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
||||
|
||||
@ -46,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
|
||||
self.load_state_dict(state_dict)
|
||||
else:
|
||||
for layer in self.linear:
|
||||
if not "ReLU" in layer.__str__():
|
||||
if type(layer) == torch.nn.Linear:
|
||||
layer.weight.data.normal_(mean=0.0, std=0.01)
|
||||
layer.bias.data.zero_()
|
||||
|
||||
@ -74,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
|
||||
def trainables(self):
|
||||
layer_structure = []
|
||||
for layer in self.linear:
|
||||
if not "ReLU" in layer.__str__():
|
||||
if type(layer) == torch.nn.Linear:
|
||||
layer_structure += [layer.weight, layer.bias]
|
||||
return layer_structure
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user