diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 3851a77f..31b255a3 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -463,6 +463,9 @@ class KDiffusionSampler: return extra_params_kwargs def get_sigmas(self, p, steps): + disc = opts.always_discard_next_to_last_sigma or (self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)) + steps += 1 if disc else 0 + if p.sampler_noise_scheduler_override: sigmas = p.sampler_noise_scheduler_override(steps) elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': @@ -472,7 +475,7 @@ class KDiffusionSampler: else: sigmas = self.model_wrap.get_sigmas(steps) - if self.config is not None and self.config.options.get('discard_next_to_last_sigma', False): + if disc: sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) return sigmas diff --git a/modules/shared.py b/modules/shared.py index 04c545ee..e0f44c6d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -442,6 +442,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), + 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"), })) options_templates.update(options_section((None, "Hidden options"), {