preprocessing for textual inversion added
This commit is contained in:
parent
c4445225f7
commit
c7543d4940
@ -21,6 +21,7 @@ Category = namedtuple("Category", ["name", "topn", "items"])
|
||||
|
||||
re_topn = re.compile(r"\.top(\d+)\.")
|
||||
|
||||
|
||||
class InterrogateModels:
|
||||
blip_model = None
|
||||
clip_model = None
|
||||
|
75
modules/textual_inversion/preprocess.py
Normal file
75
modules/textual_inversion/preprocess.py
Normal file
@ -0,0 +1,75 @@
|
||||
import os
|
||||
from PIL import Image, ImageOps
|
||||
import tqdm
|
||||
|
||||
from modules import shared, images
|
||||
|
||||
|
||||
def preprocess(process_src, process_dst, process_flip, process_split, process_caption):
|
||||
size = 512
|
||||
src = os.path.abspath(process_src)
|
||||
dst = os.path.abspath(process_dst)
|
||||
|
||||
assert src != dst, 'same directory specified as source and desitnation'
|
||||
|
||||
os.makedirs(dst, exist_ok=True)
|
||||
|
||||
files = os.listdir(src)
|
||||
|
||||
shared.state.textinfo = "Preprocessing..."
|
||||
shared.state.job_count = len(files)
|
||||
|
||||
if process_caption:
|
||||
shared.interrogator.load()
|
||||
|
||||
def save_pic_with_caption(image, index):
|
||||
if process_caption:
|
||||
caption = "-" + shared.interrogator.generate_caption(image)
|
||||
else:
|
||||
caption = ""
|
||||
|
||||
image.save(os.path.join(dst, f"{index:05}-{subindex[0]}{caption}.png"))
|
||||
subindex[0] += 1
|
||||
|
||||
def save_pic(image, index):
|
||||
save_pic_with_caption(image, index)
|
||||
|
||||
if process_flip:
|
||||
save_pic_with_caption(ImageOps.mirror(image), index)
|
||||
|
||||
for index, imagefile in enumerate(tqdm.tqdm(files)):
|
||||
subindex = [0]
|
||||
filename = os.path.join(src, imagefile)
|
||||
img = Image.open(filename).convert("RGB")
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
ratio = img.height / img.width
|
||||
is_tall = ratio > 1.35
|
||||
is_wide = ratio < 1 / 1.35
|
||||
|
||||
if process_split and is_tall:
|
||||
img = img.resize((size, size * img.height // img.width))
|
||||
|
||||
top = img.crop((0, 0, size, size))
|
||||
save_pic(top, index)
|
||||
|
||||
bot = img.crop((0, img.height - size, size, img.height))
|
||||
save_pic(bot, index)
|
||||
elif process_split and is_wide:
|
||||
img = img.resize((size * img.width // img.height, size))
|
||||
|
||||
left = img.crop((0, 0, size, size))
|
||||
save_pic(left, index)
|
||||
|
||||
right = img.crop((img.width - size, 0, img.width, size))
|
||||
save_pic(right, index)
|
||||
else:
|
||||
img = images.resize_image(1, img, size, size)
|
||||
save_pic(img, index)
|
||||
|
||||
shared.state.nextjob()
|
||||
|
||||
if process_caption:
|
||||
shared.interrogator.send_blip_to_ram()
|
@ -7,6 +7,7 @@ import tqdm
|
||||
import html
|
||||
import datetime
|
||||
|
||||
|
||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||
import modules.textual_inversion.dataset
|
||||
|
||||
|
@ -2,24 +2,31 @@ import html
|
||||
|
||||
import gradio as gr
|
||||
|
||||
import modules.textual_inversion.textual_inversion as ti
|
||||
import modules.textual_inversion.textual_inversion
|
||||
import modules.textual_inversion.preprocess
|
||||
from modules import sd_hijack, shared
|
||||
|
||||
|
||||
def create_embedding(name, initialization_text, nvpt):
|
||||
filename = ti.create_embedding(name, nvpt, init_text=initialization_text)
|
||||
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, init_text=initialization_text)
|
||||
|
||||
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||
|
||||
return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
|
||||
|
||||
|
||||
def preprocess(*args):
|
||||
modules.textual_inversion.preprocess.preprocess(*args)
|
||||
|
||||
return "Preprocessing finished.", ""
|
||||
|
||||
|
||||
def train_embedding(*args):
|
||||
|
||||
try:
|
||||
sd_hijack.undo_optimizations()
|
||||
|
||||
embedding, filename = ti.train_embedding(*args)
|
||||
embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args)
|
||||
|
||||
res = f"""
|
||||
Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps.
|
||||
@ -30,3 +37,4 @@ Embedding saved to {html.escape(filename)}
|
||||
raise
|
||||
finally:
|
||||
sd_hijack.apply_optimizations()
|
||||
|
||||
|
@ -961,6 +961,8 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Column():
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
|
||||
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Create a new embedding</p>")
|
||||
|
||||
new_embedding_name = gr.Textbox(label="Name")
|
||||
@ -974,6 +976,24 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
with gr.Column():
|
||||
create_embedding = gr.Button(value="Create", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Preprocess images</p>")
|
||||
|
||||
process_src = gr.Textbox(label='Source directory')
|
||||
process_dst = gr.Textbox(label='Destination directory')
|
||||
|
||||
with gr.Row():
|
||||
process_flip = gr.Checkbox(label='Flip')
|
||||
process_split = gr.Checkbox(label='Split into two')
|
||||
process_caption = gr.Checkbox(label='Add caption')
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
gr.HTML(value="")
|
||||
|
||||
with gr.Column():
|
||||
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
||||
|
||||
with gr.Group():
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 512x512 images</p>")
|
||||
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
|
||||
@ -1018,6 +1038,22 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
]
|
||||
)
|
||||
|
||||
run_preprocess.click(
|
||||
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
|
||||
_js="start_training_textual_inversion",
|
||||
inputs=[
|
||||
process_src,
|
||||
process_dst,
|
||||
process_flip,
|
||||
process_split,
|
||||
process_caption,
|
||||
],
|
||||
outputs=[
|
||||
ti_output,
|
||||
ti_outcome,
|
||||
],
|
||||
)
|
||||
|
||||
train_embedding.click(
|
||||
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]),
|
||||
_js="start_training_textual_inversion",
|
||||
|
Loading…
Reference in New Issue
Block a user