fixes #3449 - VRAM leak when switching to/from inpainting model
This commit is contained in:
parent
828438b4a1
commit
c833d5bfaa
@ -1,4 +1,4 @@
|
||||
from collections import namedtuple
|
||||
from collections import namedtuple, deque
|
||||
import numpy as np
|
||||
from math import floor
|
||||
import torch
|
||||
@ -335,18 +335,28 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
|
||||
class TorchHijack:
|
||||
def __init__(self, kdiff_sampler):
|
||||
self.kdiff_sampler = kdiff_sampler
|
||||
def __init__(self, sampler_noises):
|
||||
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
|
||||
# implementation.
|
||||
self.sampler_noises = deque(sampler_noises)
|
||||
|
||||
def __getattr__(self, item):
|
||||
if item == 'randn_like':
|
||||
return self.kdiff_sampler.randn_like
|
||||
return self.randn_like
|
||||
|
||||
if hasattr(torch, item):
|
||||
return getattr(torch, item)
|
||||
|
||||
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
|
||||
|
||||
def randn_like(self, x):
|
||||
if self.sampler_noises:
|
||||
noise = self.sampler_noises.popleft()
|
||||
if noise.shape == x.shape:
|
||||
return noise
|
||||
|
||||
return torch.randn_like(x)
|
||||
|
||||
|
||||
class KDiffusionSampler:
|
||||
def __init__(self, funcname, sd_model):
|
||||
@ -356,7 +366,6 @@ class KDiffusionSampler:
|
||||
self.extra_params = sampler_extra_params.get(funcname, [])
|
||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||
self.sampler_noises = None
|
||||
self.sampler_noise_index = 0
|
||||
self.stop_at = None
|
||||
self.eta = None
|
||||
self.default_eta = 1.0
|
||||
@ -389,26 +398,14 @@ class KDiffusionSampler:
|
||||
def number_of_needed_noises(self, p):
|
||||
return p.steps
|
||||
|
||||
def randn_like(self, x):
|
||||
noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
|
||||
|
||||
if noise is not None and x.shape == noise.shape:
|
||||
res = noise
|
||||
else:
|
||||
res = torch.randn_like(x)
|
||||
|
||||
self.sampler_noise_index += 1
|
||||
return res
|
||||
|
||||
def initialize(self, p):
|
||||
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
||||
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||
self.model_wrap.step = 0
|
||||
self.sampler_noise_index = 0
|
||||
self.eta = p.eta or opts.eta_ancestral
|
||||
|
||||
if self.sampler_noises is not None:
|
||||
k_diffusion.sampling.torch = TorchHijack(self)
|
||||
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises)
|
||||
|
||||
extra_params_kwargs = {}
|
||||
for param_name in self.extra_params:
|
||||
|
Loading…
Reference in New Issue
Block a user