add more stuff to ignore when creating model from config
prevent .vae.safetensors files from being listed as stable diffusion models
This commit is contained in:
parent
0c3feb202c
commit
ce3f639ec8
@ -10,7 +10,7 @@ from modules.upscaler import Upscaler
|
|||||||
from modules.paths import script_path, models_path
|
from modules.paths import script_path, models_path
|
||||||
|
|
||||||
|
|
||||||
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None) -> list:
|
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
|
||||||
"""
|
"""
|
||||||
A one-and done loader to try finding the desired models in specified directories.
|
A one-and done loader to try finding the desired models in specified directories.
|
||||||
|
|
||||||
@ -45,6 +45,8 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
|
|||||||
full_path = file
|
full_path = file
|
||||||
if os.path.isdir(full_path):
|
if os.path.isdir(full_path):
|
||||||
continue
|
continue
|
||||||
|
if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]):
|
||||||
|
continue
|
||||||
if len(ext_filter) != 0:
|
if len(ext_filter) != 0:
|
||||||
model_name, extension = os.path.splitext(file)
|
model_name, extension = os.path.splitext(file)
|
||||||
if extension not in ext_filter:
|
if extension not in ext_filter:
|
||||||
|
@ -1,15 +1,19 @@
|
|||||||
import ldm.modules.encoders.modules
|
import ldm.modules.encoders.modules
|
||||||
import open_clip
|
import open_clip
|
||||||
import torch
|
import torch
|
||||||
|
import transformers.utils.hub
|
||||||
|
|
||||||
|
|
||||||
class DisableInitialization:
|
class DisableInitialization:
|
||||||
"""
|
"""
|
||||||
When an object of this class enters a `with` block, it starts preventing torch's layer initialization
|
When an object of this class enters a `with` block, it starts:
|
||||||
functions from working, and changes CLIP and OpenCLIP to not download model weights. When it leaves,
|
- preventing torch's layer initialization functions from working
|
||||||
reverts everything to how it was.
|
- changes CLIP and OpenCLIP to not download model weights
|
||||||
|
- changes CLIP to not make requests to check if there is a new version of a file you already have
|
||||||
|
|
||||||
Use like this:
|
When it leaves the block, it reverts everything to how it was before.
|
||||||
|
|
||||||
|
Use it like this:
|
||||||
```
|
```
|
||||||
with DisableInitialization():
|
with DisableInitialization():
|
||||||
do_things()
|
do_things()
|
||||||
@ -26,19 +30,36 @@ class DisableInitialization:
|
|||||||
def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
||||||
return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
|
return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
|
||||||
|
|
||||||
|
def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
|
||||||
|
|
||||||
|
# this file is always 404, prevent making request
|
||||||
|
if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json':
|
||||||
|
raise transformers.utils.hub.EntryNotFoundError
|
||||||
|
|
||||||
|
try:
|
||||||
|
return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=True, **kwargs)
|
||||||
|
except Exception as e:
|
||||||
|
return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs)
|
||||||
|
|
||||||
self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_
|
self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_
|
||||||
self.init_no_grad_normal = torch.nn.init._no_grad_normal_
|
self.init_no_grad_normal = torch.nn.init._no_grad_normal_
|
||||||
|
self.init_no_grad_uniform_ = torch.nn.init._no_grad_uniform_
|
||||||
self.create_model_and_transforms = open_clip.create_model_and_transforms
|
self.create_model_and_transforms = open_clip.create_model_and_transforms
|
||||||
self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained
|
self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained
|
||||||
|
self.transformers_utils_hub_get_from_cache = transformers.utils.hub.get_from_cache
|
||||||
|
|
||||||
torch.nn.init.kaiming_uniform_ = do_nothing
|
torch.nn.init.kaiming_uniform_ = do_nothing
|
||||||
torch.nn.init._no_grad_normal_ = do_nothing
|
torch.nn.init._no_grad_normal_ = do_nothing
|
||||||
|
torch.nn.init._no_grad_uniform_ = do_nothing
|
||||||
open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained
|
open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained
|
||||||
ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained
|
ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained
|
||||||
|
transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache
|
||||||
|
|
||||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform
|
torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform
|
||||||
torch.nn.init._no_grad_normal_ = self.init_no_grad_normal
|
torch.nn.init._no_grad_normal_ = self.init_no_grad_normal
|
||||||
|
torch.nn.init._no_grad_uniform_ = self.init_no_grad_uniform_
|
||||||
open_clip.create_model_and_transforms = self.create_model_and_transforms
|
open_clip.create_model_and_transforms = self.create_model_and_transforms
|
||||||
ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained
|
ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained
|
||||||
|
transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache
|
||||||
|
|
||||||
|
@ -2,6 +2,7 @@ import collections
|
|||||||
import os.path
|
import os.path
|
||||||
import sys
|
import sys
|
||||||
import gc
|
import gc
|
||||||
|
import time
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
import torch
|
import torch
|
||||||
import re
|
import re
|
||||||
@ -61,7 +62,7 @@ def find_checkpoint_config(info):
|
|||||||
|
|
||||||
def list_models():
|
def list_models():
|
||||||
checkpoints_list.clear()
|
checkpoints_list.clear()
|
||||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"])
|
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"])
|
||||||
|
|
||||||
def modeltitle(path, shorthash):
|
def modeltitle(path, shorthash):
|
||||||
abspath = os.path.abspath(path)
|
abspath = os.path.abspath(path)
|
||||||
@ -288,6 +289,17 @@ def enable_midas_autodownload():
|
|||||||
midas.api.load_model = load_model_wrapper
|
midas.api.load_model = load_model_wrapper
|
||||||
|
|
||||||
|
|
||||||
|
class Timer:
|
||||||
|
def __init__(self):
|
||||||
|
self.start = time.time()
|
||||||
|
|
||||||
|
def elapsed(self):
|
||||||
|
end = time.time()
|
||||||
|
res = end - self.start
|
||||||
|
self.start = end
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
def load_model(checkpoint_info=None):
|
def load_model(checkpoint_info=None):
|
||||||
from modules import lowvram, sd_hijack
|
from modules import lowvram, sd_hijack
|
||||||
checkpoint_info = checkpoint_info or select_checkpoint()
|
checkpoint_info = checkpoint_info or select_checkpoint()
|
||||||
@ -319,11 +331,17 @@ def load_model(checkpoint_info=None):
|
|||||||
if shared.cmd_opts.no_half:
|
if shared.cmd_opts.no_half:
|
||||||
sd_config.model.params.unet_config.params.use_fp16 = False
|
sd_config.model.params.unet_config.params.use_fp16 = False
|
||||||
|
|
||||||
|
timer = Timer()
|
||||||
|
|
||||||
with sd_disable_initialization.DisableInitialization():
|
with sd_disable_initialization.DisableInitialization():
|
||||||
sd_model = instantiate_from_config(sd_config.model)
|
sd_model = instantiate_from_config(sd_config.model)
|
||||||
|
|
||||||
|
elapsed_create = timer.elapsed()
|
||||||
|
|
||||||
load_model_weights(sd_model, checkpoint_info)
|
load_model_weights(sd_model, checkpoint_info)
|
||||||
|
|
||||||
|
elapsed_load_weights = timer.elapsed()
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
||||||
else:
|
else:
|
||||||
@ -338,7 +356,9 @@ def load_model(checkpoint_info=None):
|
|||||||
|
|
||||||
script_callbacks.model_loaded_callback(sd_model)
|
script_callbacks.model_loaded_callback(sd_model)
|
||||||
|
|
||||||
print("Model loaded.")
|
elapsed_the_rest = timer.elapsed()
|
||||||
|
|
||||||
|
print(f"Model loaded in {elapsed_create + elapsed_load_weights + elapsed_the_rest:.1f}s ({elapsed_create:.1f}s create model, {elapsed_load_weights:.1f}s load weights).")
|
||||||
|
|
||||||
return sd_model
|
return sd_model
|
||||||
|
|
||||||
@ -371,6 +391,8 @@ def reload_model_weights(sd_model=None, info=None):
|
|||||||
|
|
||||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||||
|
|
||||||
|
timer = Timer()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
load_model_weights(sd_model, checkpoint_info)
|
load_model_weights(sd_model, checkpoint_info)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@ -384,6 +406,8 @@ def reload_model_weights(sd_model=None, info=None):
|
|||||||
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||||
sd_model.to(devices.device)
|
sd_model.to(devices.device)
|
||||||
|
|
||||||
print("Weights loaded.")
|
elapsed = timer.elapsed()
|
||||||
|
|
||||||
|
print(f"Weights loaded in {elapsed:.1f}s.")
|
||||||
|
|
||||||
return sd_model
|
return sd_model
|
||||||
|
Loading…
Reference in New Issue
Block a user