removed the option to use 2x more memory when generating previews
added an option to always only show one image in previews removed duplicate code
This commit is contained in:
parent
4fdb53c1e9
commit
d213d6ca6f
@ -71,6 +71,7 @@ sampler_extra_params = {
|
||||
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
||||
}
|
||||
|
||||
|
||||
def setup_img2img_steps(p, steps=None):
|
||||
if opts.img2img_fix_steps or steps is not None:
|
||||
steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
|
||||
@ -82,37 +83,21 @@ def setup_img2img_steps(p, steps=None):
|
||||
return steps, t_enc
|
||||
|
||||
|
||||
def sample_to_image(samples):
|
||||
x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0]
|
||||
def single_sample_to_image(sample):
|
||||
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
return Image.fromarray(x_sample)
|
||||
|
||||
|
||||
def sample_to_image(samples):
|
||||
return single_sample_to_image(samples[0])
|
||||
|
||||
|
||||
def samples_to_image_grid(samples):
|
||||
progress_images = []
|
||||
for i in range(len(samples)):
|
||||
# Decode the samples individually to reduce VRAM usage at the cost of a bit of speed.
|
||||
x_sample = processing.decode_first_stage(shared.sd_model, samples[i:i+1])[0]
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
progress_images.append(Image.fromarray(x_sample))
|
||||
return images.image_grid([single_sample_to_image(sample) for sample in samples])
|
||||
|
||||
return images.image_grid(progress_images)
|
||||
|
||||
def samples_to_image_grid_combined(samples):
|
||||
progress_images = []
|
||||
# Decode all samples at once to increase speed at the cost of VRAM usage.
|
||||
x_samples = processing.decode_first_stage(shared.sd_model, samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
for x_sample in x_samples:
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
progress_images.append(Image.fromarray(x_sample))
|
||||
|
||||
return images.image_grid(progress_images)
|
||||
|
||||
def store_latent(decoded):
|
||||
state.current_latent = decoded
|
||||
|
@ -294,7 +294,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
|
||||
options_templates.update(options_section(('ui', "User interface"), {
|
||||
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
||||
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
||||
"progress_decode_combined": OptionInfo(False, "Decode all progress images at once. (Slighty speeds up progress generation but consumes significantly more VRAM with large batches.)"),
|
||||
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
|
||||
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
||||
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
||||
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
|
||||
|
@ -318,10 +318,10 @@ def check_progress_call(id_part):
|
||||
if shared.parallel_processing_allowed:
|
||||
|
||||
if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None:
|
||||
if opts.progress_decode_combined:
|
||||
shared.state.current_image = modules.sd_samplers.samples_to_image_grid_combined(shared.state.current_latent)
|
||||
else:
|
||||
if opts.show_progress_grid:
|
||||
shared.state.current_image = modules.sd_samplers.samples_to_image_grid(shared.state.current_latent)
|
||||
else:
|
||||
shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent)
|
||||
shared.state.current_image_sampling_step = shared.state.sampling_step
|
||||
|
||||
image = shared.state.current_image
|
||||
|
Loading…
Reference in New Issue
Block a user