Merge pull request #6782 from aria1th/fix-hypernetwork-loss
Fix tensorboard-hypernetwork integration correctly
This commit is contained in:
commit
d6fa8e92ca
@ -561,6 +561,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
_loss_step = 0 #internal
|
_loss_step = 0 #internal
|
||||||
# size = len(ds.indexes)
|
# size = len(ds.indexes)
|
||||||
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||||
|
loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size)
|
||||||
# losses = torch.zeros((size,))
|
# losses = torch.zeros((size,))
|
||||||
# previous_mean_losses = [0]
|
# previous_mean_losses = [0]
|
||||||
# previous_mean_loss = 0
|
# previous_mean_loss = 0
|
||||||
@ -610,7 +611,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
# go back until we reach gradient accumulation steps
|
# go back until we reach gradient accumulation steps
|
||||||
if (j + 1) % gradient_step != 0:
|
if (j + 1) % gradient_step != 0:
|
||||||
continue
|
continue
|
||||||
|
loss_logging.append(_loss_step)
|
||||||
if clip_grad:
|
if clip_grad:
|
||||||
clip_grad(weights, clip_grad_sched.learn_rate)
|
clip_grad(weights, clip_grad_sched.learn_rate)
|
||||||
|
|
||||||
@ -644,7 +645,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
if shared.opts.training_enable_tensorboard:
|
if shared.opts.training_enable_tensorboard:
|
||||||
epoch_num = hypernetwork.step // len(ds)
|
epoch_num = hypernetwork.step // len(ds)
|
||||||
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
||||||
mean_loss = sum(sum(x) for x in loss_dict.values()) / sum(len(x) for x in loss_dict.values())
|
mean_loss = sum(loss_logging) / len(loss_logging)
|
||||||
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
||||||
|
|
||||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
||||||
@ -688,9 +689,6 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
|
|
||||||
processed = processing.process_images(p)
|
processed = processing.process_images(p)
|
||||||
image = processed.images[0] if len(processed.images) > 0 else None
|
image = processed.images[0] if len(processed.images) > 0 else None
|
||||||
|
|
||||||
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
|
||||||
textual_inversion.tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, hypernetwork.step)
|
|
||||||
|
|
||||||
if unload:
|
if unload:
|
||||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
@ -701,7 +699,10 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
hypernetwork.train()
|
hypernetwork.train()
|
||||||
if image is not None:
|
if image is not None:
|
||||||
shared.state.assign_current_image(image)
|
shared.state.assign_current_image(image)
|
||||||
|
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
||||||
|
textual_inversion.tensorboard_add_image(tensorboard_writer,
|
||||||
|
f"Validation at epoch {epoch_num}", image,
|
||||||
|
hypernetwork.step)
|
||||||
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||||
last_saved_image += f", prompt: {preview_text}"
|
last_saved_image += f", prompt: {preview_text}"
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user