Merge remote-tracking branch 'upstream/master' into ModelLoader

This commit is contained in:
d8ahazard 2022-09-29 19:59:36 -05:00
commit d73741794d
20 changed files with 560 additions and 149 deletions

2
.gitignore vendored
View File

@ -8,6 +8,8 @@ __pycache__
/tmp /tmp
/model.ckpt /model.ckpt
/models/**/* /models/**/*
/GFPGANv1.3.pth
/gfpgan/weights/*.pth
/ui-config.json /ui-config.json
/outputs /outputs
/config.json /config.json

View File

@ -15,6 +15,7 @@ titles = {
"\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomed", "\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomed",
"\u{1f3a8}": "Add a random artist to the prompt.", "\u{1f3a8}": "Add a random artist to the prompt.",
"\u2199\ufe0f": "Read generation parameters from prompt into user interface.", "\u2199\ufe0f": "Read generation parameters from prompt into user interface.",
"\uD83D\uDCC2": "Open images output directory",
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt", "Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back", "SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",

View File

@ -182,4 +182,23 @@ onUiUpdate(function(){
}); });
json_elem.parentElement.style.display="none" json_elem.parentElement.style.display="none"
if (!txt2img_textarea) {
txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea");
txt2img_textarea?.addEventListener("input", () => update_token_counter("txt2img_token_button"));
}
if (!img2img_textarea) {
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
}
}) })
let txt2img_textarea, img2img_textarea = undefined;
let wait_time = 800
let token_timeout;
function update_token_counter(button_id) {
if (token_timeout)
clearTimeout(token_timeout);
token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
}

View File

@ -15,11 +15,11 @@ torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt") requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
commandline_args = os.environ.get('COMMANDLINE_ARGS', "") commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
k_diffusion_package = os.environ.get('K_DIFFUSION_PACKAGE', "git+https://github.com/crowsonkb/k-diffusion.git@1a0703dfb7d24d8806267c3e7ccc4caf67fd1331")
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379") gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc") stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6") taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "a7ec1974d4ccb394c2dca275f42cd97490618924")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af") codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9") blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
@ -107,10 +107,7 @@ if not is_installed("torch") or not is_installed("torchvision"):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch") run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
if not skip_torch_cuda_test: if not skip_torch_cuda_test:
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDINE_ARGS variable to disable this check'") run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
if not is_installed("k_diffusion.sampling"):
run_pip(f"install {k_diffusion_package}", "k-diffusion")
if not is_installed("gfpgan"): if not is_installed("gfpgan"):
run_pip(f"install {gfpgan_package}", "gfpgan") run_pip(f"install {gfpgan_package}", "gfpgan")
@ -119,6 +116,7 @@ os.makedirs(dir_repos, exist_ok=True)
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash) git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash) git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash) git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash) git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
if os.path.isdir(repo_dir('latent-diffusion')): if os.path.isdir(repo_dir('latent-diffusion')):
@ -133,6 +131,9 @@ run_pip(f"install -r {requirements_file}", "requirements for Web UI")
sys.argv += args sys.argv += args
if "--exit" in args:
print("Exiting because of --exit argument")
exit(0)
def start_webui(): def start_webui():
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}") print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}")

View File

@ -6,13 +6,14 @@ from PIL import Image
import torch import torch
import tqdm import tqdm
from modules import processing, shared, images, devices from modules import processing, shared, images, devices, sd_models
from modules.shared import opts from modules.shared import opts
import modules.gfpgan_model import modules.gfpgan_model
from modules.ui import plaintext_to_html from modules.ui import plaintext_to_html
import modules.codeformer_model import modules.codeformer_model
import piexif import piexif
import piexif.helper import piexif.helper
import gradio as gr
cached_images = {} cached_images = {}
@ -141,7 +142,7 @@ def run_pnginfo(image):
return '', geninfo, info return '', geninfo, info
def run_modelmerger(modelname_0, modelname_1, interp_method, interp_amount): def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount, save_as_half, custom_name):
# Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation) # Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation)
def weighted_sum(theta0, theta1, alpha): def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1) return ((1 - alpha) * theta0) + (alpha * theta1)
@ -151,45 +152,52 @@ def run_modelmerger(modelname_0, modelname_1, interp_method, interp_amount):
alpha = alpha * alpha * (3 - (2 * alpha)) alpha = alpha * alpha * (3 - (2 * alpha))
return theta0 + ((theta1 - theta0) * alpha) return theta0 + ((theta1 - theta0) * alpha)
if os.path.exists(modelname_0): # Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
model0_filename = modelname_0 def inv_sigmoid(theta0, theta1, alpha):
modelname_0 = os.path.splitext(os.path.basename(modelname_0))[0] import math
else: alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
model0_filename = 'models/' + modelname_0 + '.ckpt' return theta0 + ((theta1 - theta0) * alpha)
if os.path.exists(modelname_1): primary_model_info = sd_models.checkpoints_list[primary_model_name]
model1_filename = modelname_1 secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
modelname_1 = os.path.splitext(os.path.basename(modelname_1))[0]
else:
model1_filename = 'models/' + modelname_1 + '.ckpt'
print(f"Loading {model0_filename}...") print(f"Loading {primary_model_info.filename}...")
model_0 = torch.load(model0_filename, map_location='cpu') primary_model = torch.load(primary_model_info.filename, map_location='cpu')
print(f"Loading {model1_filename}...") print(f"Loading {secondary_model_info.filename}...")
model_1 = torch.load(model1_filename, map_location='cpu') secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
theta_0 = model_0['state_dict'] theta_0 = primary_model['state_dict']
theta_1 = model_1['state_dict'] theta_1 = secondary_model['state_dict']
theta_funcs = { theta_funcs = {
"Weighted Sum": weighted_sum, "Weighted Sum": weighted_sum,
"Sigmoid": sigmoid, "Sigmoid": sigmoid,
"Inverse Sigmoid": inv_sigmoid,
} }
theta_func = theta_funcs[interp_method] theta_func = theta_funcs[interp_method]
print(f"Merging...") print(f"Merging...")
for key in tqdm.tqdm(theta_0.keys()): for key in tqdm.tqdm(theta_0.keys()):
if 'model' in key and key in theta_1: if 'model' in key and key in theta_1:
theta_0[key] = theta_func(theta_0[key], theta_1[key], interp_amount) theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
if save_as_half:
theta_0[key] = theta_0[key].half()
for key in theta_1.keys(): for key in theta_1.keys():
if 'model' in key and key not in theta_0: if 'model' in key and key not in theta_0:
theta_0[key] = theta_1[key] theta_0[key] = theta_1[key]
if save_as_half:
theta_0[key] = theta_0[key].half()
filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
filename = filename if custom_name == '' else (custom_name + '.ckpt')
output_modelname = os.path.join(shared.cmd_opts.ckpt_dir, filename)
output_modelname = 'models/' + modelname_0 + '-' + modelname_1 + '-merged.ckpt'
print(f"Saving to {output_modelname}...") print(f"Saving to {output_modelname}...")
torch.save(model_0, output_modelname) torch.save(primary_model, output_modelname)
sd_models.list_models()
print(f"Checkpoint saved.") print(f"Checkpoint saved.")
return "Checkpoint saved to " + output_modelname return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(3)]

View File

@ -124,4 +124,4 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
if opts.samples_log_stdout: if opts.samples_log_stdout:
print(generation_info_js) print(generation_info_js)
return processed.images, generation_info_js, plaintext_to_html(processed.info) return processed.images, generation_info_js, plaintext_to_html(processed.info)

View File

@ -21,6 +21,7 @@ path_dirs = [
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer'), (os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer'),
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP'), (os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP'),
(os.path.join(sd_path, '../latent-diffusion'), 'LDSR.py', 'LDSR'), (os.path.join(sd_path, '../latent-diffusion'), 'LDSR.py', 'LDSR'),
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion'),
] ]
paths = {} paths = {}

View File

@ -49,7 +49,7 @@ def apply_color_correction(correction, image):
class StableDiffusionProcessing: class StableDiffusionProcessing:
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None): def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
self.sd_model = sd_model self.sd_model = sd_model
self.outpath_samples: str = outpath_samples self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids self.outpath_grids: str = outpath_grids
@ -75,15 +75,15 @@ class StableDiffusionProcessing:
self.do_not_save_grid: bool = do_not_save_grid self.do_not_save_grid: bool = do_not_save_grid
self.extra_generation_params: dict = extra_generation_params or {} self.extra_generation_params: dict = extra_generation_params or {}
self.overlay_images = overlay_images self.overlay_images = overlay_images
self.eta = eta
self.paste_to = None self.paste_to = None
self.color_corrections = None self.color_corrections = None
self.denoising_strength: float = 0 self.denoising_strength: float = 0
self.ddim_eta = opts.ddim_eta
self.ddim_discretize = opts.ddim_discretize self.ddim_discretize = opts.ddim_discretize
self.s_churn = opts.s_churn self.s_churn = opts.s_churn
self.s_tmin = opts.s_tmin self.s_tmin = opts.s_tmin
self.s_tmax = float('inf') # not representable as a standard ui option self.s_tmax = float('inf') # not representable as a standard ui option
self.s_noise = opts.s_noise self.s_noise = opts.s_noise
if not seed_enable_extras: if not seed_enable_extras:
@ -100,7 +100,7 @@ class StableDiffusionProcessing:
class Processed: class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0): def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
self.images = images_list self.images = images_list
self.prompt = p.prompt self.prompt = p.prompt
self.negative_prompt = p.negative_prompt self.negative_prompt = p.negative_prompt
@ -124,7 +124,7 @@ class Processed:
self.extra_generation_params = p.extra_generation_params self.extra_generation_params = p.extra_generation_params
self.index_of_first_image = index_of_first_image self.index_of_first_image = index_of_first_image
self.ddim_eta = p.ddim_eta self.eta = p.eta
self.ddim_discretize = p.ddim_discretize self.ddim_discretize = p.ddim_discretize
self.s_churn = p.s_churn self.s_churn = p.s_churn
self.s_tmin = p.s_tmin self.s_tmin = p.s_tmin
@ -139,6 +139,7 @@ class Processed:
self.all_prompts = all_prompts or [self.prompt] self.all_prompts = all_prompts or [self.prompt]
self.all_seeds = all_seeds or [self.seed] self.all_seeds = all_seeds or [self.seed]
self.all_subseeds = all_subseeds or [self.subseed] self.all_subseeds = all_subseeds or [self.subseed]
self.infotexts = infotexts or [info]
def js(self): def js(self):
obj = { obj = {
@ -165,6 +166,7 @@ class Processed:
"denoising_strength": self.denoising_strength, "denoising_strength": self.denoising_strength,
"extra_generation_params": self.extra_generation_params, "extra_generation_params": self.extra_generation_params,
"index_of_first_image": self.index_of_first_image, "index_of_first_image": self.index_of_first_image,
"infotexts": self.infotexts,
} }
return json.dumps(obj) return json.dumps(obj)
@ -269,6 +271,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None), "Denoising strength": getattr(p, 'denoising_strength', None),
"Eta": (None if p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
} }
generation_params.update(p.extra_generation_params) generation_params.update(p.extra_generation_params)
@ -277,7 +280,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else "" negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments]) return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
def process_images(p: StableDiffusionProcessing) -> Processed: def process_images(p: StableDiffusionProcessing) -> Processed:
@ -322,6 +325,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if os.path.exists(cmd_opts.embeddings_dir): if os.path.exists(cmd_opts.embeddings_dir):
model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model) model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model)
infotexts = []
output_images = [] output_images = []
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope) ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
@ -404,6 +408,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if opts.samples_save and not p.do_not_save_samples: if opts.samples_save and not p.do_not_save_samples:
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p) images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
infotexts.append(infotext(n, i))
output_images.append(image) output_images.append(image)
state.nextjob() state.nextjob()
@ -416,6 +421,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
grid = images.image_grid(output_images, p.batch_size) grid = images.image_grid(output_images, p.batch_size)
if opts.return_grid: if opts.return_grid:
infotexts.insert(0, infotext())
output_images.insert(0, grid) output_images.insert(0, grid)
index_of_first_image = 1 index_of_first_image = 1
@ -423,7 +429,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc() devices.torch_gc()
return Processed(p, output_images, all_seeds[0], infotext(), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image) return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):

View File

@ -126,5 +126,93 @@ def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
return res return res
re_attention = re.compile(r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""", re.X)
#get_learned_conditioning_prompt_schedules(["fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"], 100)
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its assoicated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\( - literal character '('
\[ - literal character '['
\) - literal character ')'
\] - literal character ']'
\\ - literal character '\'
anything else - just text
Example:
'a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).'
produces:
[
['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]
]
"""
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith('\\'):
res.append([text[1:], 1.0])
elif text == '(':
round_brackets.append(len(res))
elif text == '[':
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ')' and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == ']' and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
res.append([text, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
return res

View File

@ -55,7 +55,7 @@ def load_scripts(basedir):
if not os.path.exists(basedir): if not os.path.exists(basedir):
return return
for filename in os.listdir(basedir): for filename in sorted(os.listdir(basedir)):
path = os.path.join(basedir, filename) path = os.path.join(basedir, filename)
if not os.path.isfile(path): if not os.path.isfile(path):

View File

@ -6,6 +6,7 @@ import torch
import numpy as np import numpy as np
from torch import einsum from torch import einsum
from modules import prompt_parser
from modules.shared import opts, device, cmd_opts from modules.shared import opts, device, cmd_opts
from ldm.util import default from ldm.util import default
@ -180,6 +181,7 @@ class StableDiffusionModelHijack:
dir_mtime = None dir_mtime = None
layers = None layers = None
circular_enabled = False circular_enabled = False
clip = None
def load_textual_inversion_embeddings(self, dirname, model): def load_textual_inversion_embeddings(self, dirname, model):
mt = os.path.getmtime(dirname) mt = os.path.getmtime(dirname)
@ -210,6 +212,7 @@ class StableDiffusionModelHijack:
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it' assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1] emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it' assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
@ -235,7 +238,7 @@ class StableDiffusionModelHijack:
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
continue continue
print(f"Loaded a total of {len(self.word_embeddings)} text inversion embeddings.") print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
def hijack(self, m): def hijack(self, m):
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
@ -243,6 +246,8 @@ class StableDiffusionModelHijack:
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
self.clip = m.cond_stage_model
if cmd_opts.opt_split_attention_v1: if cmd_opts.opt_split_attention_v1:
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1 ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
@ -259,6 +264,14 @@ class StableDiffusionModelHijack:
self.layers = flatten(m) self.layers = flatten(m)
def undo_hijack(self, m):
if type(m.cond_stage_model) == FrozenCLIPEmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
def apply_circular(self, enable): def apply_circular(self, enable):
if self.circular_enabled == enable: if self.circular_enabled == enable:
return return
@ -268,6 +281,11 @@ class StableDiffusionModelHijack:
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]: for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
layer.padding_mode = 'circular' if enable else 'zeros' layer.padding_mode = 'circular' if enable else 'zeros'
def tokenize(self, text):
max_length = self.clip.max_length - 2
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
return remade_batch_tokens[0], token_count, max_length
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
def __init__(self, wrapped, hijack): def __init__(self, wrapped, hijack):
@ -294,14 +312,101 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if mult != 1.0: if mult != 1.0:
self.token_mults[ident] = mult self.token_mults[ident] = mult
def forward(self, text):
self.hijack.fixes = [] def tokenize_line(self, line, used_custom_terms, hijack_comments):
self.hijack.comments = [] id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
maxlen = self.wrapped.max_length
if opts.enable_emphasis:
parsed = prompt_parser.parse_prompt_attention(line)
else:
parsed = [[line, 1.0]]
tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"]
fixes = []
remade_tokens = []
multipliers = []
for tokens, (text, weight) in zip(tokenized, parsed):
i = 0
while i < len(tokens):
token = tokens[i]
possible_matches = self.hijack.ids_lookup.get(token, None)
if possible_matches is None:
remade_tokens.append(token)
multipliers.append(weight)
else:
found = False
for ids, word in possible_matches:
if tokens[i:i + len(ids)] == ids:
emb_len = int(self.hijack.word_embeddings[word].shape[0])
fixes.append((len(remade_tokens), word))
remade_tokens += [0] * emb_len
multipliers += [weight] * emb_len
i += len(ids) - 1
found = True
used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word]))
break
if not found:
remade_tokens.append(token)
multipliers.append(weight)
i += 1
if len(remade_tokens) > maxlen - 2:
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
ovf = remade_tokens[maxlen - 2:]
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
return remade_tokens, fixes, multipliers, token_count
def process_text(self, texts):
used_custom_terms = []
remade_batch_tokens = [] remade_batch_tokens = []
hijack_comments = []
hijack_fixes = []
token_count = 0
cache = {}
batch_multipliers = []
for line in texts:
if line in cache:
remade_tokens, fixes, multipliers = cache[line]
else:
remade_tokens, fixes, multipliers, token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
cache[line] = (remade_tokens, fixes, multipliers)
remade_batch_tokens.append(remade_tokens)
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def process_text_old(self, text):
id_start = self.wrapped.tokenizer.bos_token_id id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id id_end = self.wrapped.tokenizer.eos_token_id
maxlen = self.wrapped.max_length maxlen = self.wrapped.max_length
used_custom_terms = [] used_custom_terms = []
remade_batch_tokens = []
overflowing_words = []
hijack_comments = []
hijack_fixes = []
token_count = 0
cache = {} cache = {}
batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"] batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"]
@ -353,9 +458,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
ovf = remade_tokens[maxlen - 2:] ovf = remade_tokens[maxlen - 2:]
overflowing_words = [vocab.get(int(x), "") for x in ovf] overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
self.hijack.comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end] remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers) cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
@ -364,11 +468,23 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
remade_batch_tokens.append(remade_tokens) remade_batch_tokens.append(remade_tokens)
self.hijack.fixes.append(fixes) hijack_fixes.append(fixes)
batch_multipliers.append(multipliers) batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def forward(self, text):
if opts.use_old_emphasis_implementation:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
else:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
self.hijack.fixes = hijack_fixes
self.hijack.comments = hijack_comments
if len(used_custom_terms) > 0: if len(used_custom_terms) > 0:
self.hijack.comments.append("Used custom terms: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
tokens = torch.asarray(remade_batch_tokens).to(device) tokens = torch.asarray(remade_batch_tokens).to(device)
outputs = self.wrapped.transformer(input_ids=tokens) outputs = self.wrapped.transformer(input_ids=tokens)

View File

@ -15,8 +15,9 @@ model_dir = "Stable-diffusion"
model_path = os.path.join(models_path, model_dir) model_path = os.path.join(models_path, model_dir)
model_name = "sd-v1-4.ckpt" model_name = "sd-v1-4.ckpt"
model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1" model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1"
user_dir = None
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash']) CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
checkpoints_list = {} checkpoints_list = {}
try: try:
@ -47,23 +48,56 @@ def setup_model(dirname):
global model_path global model_path
global model_name global model_name
global model_url global model_url
global user_dir
global model_list
user_dir = dirname
if not os.path.exists(model_path): if not os.path.exists(model_path):
os.makedirs(model_path) os.makedirs(model_path)
checkpoints_list.clear() checkpoints_list.clear()
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=dirname, download_name=model_name, ext_filter=".ckpt") list_models()
def checkpoint_tiles():
return sorted([x.title for x in checkpoints_list.values()])
def list_models():
global model_path
global model_url
global model_name
global user_dir
checkpoints_list.clear()
model_list = modelloader.load_models(model_path=model_path,model_url=model_url,command_path= user_dir,
ext_filter=[".ckpt"], download_name=model_name)
print(f"Model list: {model_list}")
model_dir = os.path.abspath(model_path)
def modeltitle(path, h):
abspath = os.path.abspath(path)
if abspath.startswith(model_dir):
name = abspath.replace(model_dir, '')
else:
name = os.path.basename(path)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
return f'{name} [{h}]', shortname
cmd_ckpt = shared.cmd_opts.ckpt cmd_ckpt = shared.cmd_opts.ckpt
if os.path.exists(cmd_ckpt): if os.path.exists(cmd_ckpt):
h = model_hash(cmd_ckpt) h = model_hash(cmd_ckpt)
title = modeltitle(cmd_ckpt, h) title, model_name = modeltitle(cmd_ckpt, h)
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h) checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, model_name)
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in model_list: for filename in model_list:
h = model_hash(filename) h = model_hash(filename)
title = modeltitle(filename, h) title = modeltitle(filename, h)
checkpoints_list[title] = CheckpointInfo(filename, title, h) checkpoints_list[title] = CheckpointInfo(filename, title, h, model_name)
def model_hash(filename): def model_hash(filename):
@ -89,7 +123,7 @@ def select_checkpoint():
if len(checkpoints_list) == 0: if len(checkpoints_list) == 0:
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) print(f" - directory {os.path.abspath(shared.cmd_opts.stablediffusion_models_path)}", file=sys.stderr)
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1) exit(1)
@ -142,7 +176,7 @@ def load_model():
def reload_model_weights(sd_model, info=None): def reload_model_weights(sd_model, info=None):
from modules import lowvram, devices from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint() checkpoint_info = info or select_checkpoint()
if sd_model.sd_model_checkpint == checkpoint_info.filename: if sd_model.sd_model_checkpint == checkpoint_info.filename:
@ -153,8 +187,12 @@ def reload_model_weights(sd_model, info=None):
else: else:
sd_model.to(devices.cpu) sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(sd_model)
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash) load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
sd_hijack.model_hijack.hijack(sd_model)
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device) sd_model.to(devices.device)

View File

@ -3,6 +3,7 @@ import numpy as np
import torch import torch
import tqdm import tqdm
from PIL import Image from PIL import Image
import inspect
import k_diffusion.sampling import k_diffusion.sampling
import ldm.models.diffusion.ddim import ldm.models.diffusion.ddim
@ -22,6 +23,8 @@ samplers_k_diffusion = [
('Heun', 'sample_heun', ['k_heun']), ('Heun', 'sample_heun', ['k_heun']),
('DPM2', 'sample_dpm_2', ['k_dpm_2']), ('DPM2', 'sample_dpm_2', ['k_dpm_2']),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']), ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']),
] ]
samplers_data_k_diffusion = [ samplers_data_k_diffusion = [
@ -35,12 +38,12 @@ samplers = [
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []), SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []), SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []),
] ]
samplers_for_img2img = [x for x in samplers if x.name != 'PLMS'] samplers_for_img2img = [x for x in samplers if x.name not in ['PLMS', 'DPM fast', 'DPM adaptive']]
sampler_extra_params = { sampler_extra_params = {
'sample_euler':['s_churn','s_tmin','s_tmax','s_noise'], 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_heun' :['s_churn','s_tmin','s_tmax','s_noise'], 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_2':['s_churn','s_tmin','s_tmax','s_noise'], 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
} }
def setup_img2img_steps(p, steps=None): def setup_img2img_steps(p, steps=None):
@ -98,6 +101,8 @@ class VanillaStableDiffusionSampler:
self.init_latent = None self.init_latent = None
self.sampler_noises = None self.sampler_noises = None
self.step = 0 self.step = 0
self.eta = None
self.default_eta = 0.0
def number_of_needed_noises(self, p): def number_of_needed_noises(self, p):
return 0 return 0
@ -120,20 +125,29 @@ class VanillaStableDiffusionSampler:
self.step += 1 self.step += 1
return res return res
def initialize(self, p):
self.eta = p.eta or opts.eta_ddim
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None): def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
steps, t_enc = setup_img2img_steps(p, steps) steps, t_enc = setup_img2img_steps(p, steps)
self.initialize(p)
# existing code fails with cetain step counts, like 9 # existing code fails with cetain step counts, like 9
try: try:
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=p.ddim_eta, ddim_discretize=p.ddim_discretize, verbose=False) self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
except Exception: except Exception:
self.sampler.make_schedule(ddim_num_steps=steps+1,ddim_eta=p.ddim_eta, ddim_discretize=p.ddim_discretize, verbose=False) self.sampler.make_schedule(ddim_num_steps=steps+1, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.sampler.p_sample_ddim = self.p_sample_ddim_hook
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
self.init_latent = x self.init_latent = x
self.step = 0 self.step = 0
@ -142,11 +156,8 @@ class VanillaStableDiffusionSampler:
return samples return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
for fieldname in ['p_sample_ddim', 'p_sample_plms']: self.initialize(p)
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
self.mask = None
self.nmask = None
self.init_latent = None self.init_latent = None
self.step = 0 self.step = 0
@ -154,9 +165,9 @@ class VanillaStableDiffusionSampler:
# existing code fails with cetin step counts, like 9 # existing code fails with cetin step counts, like 9
try: try:
samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_t=x, eta=p.ddim_eta) samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)
except Exception: except Exception:
samples_ddim, _ = self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_t=x, eta=p.ddim_eta) samples_ddim, _ = self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)
return samples_ddim return samples_ddim
@ -229,11 +240,13 @@ class KDiffusionSampler:
self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization) self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname) self.func = getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname,[]) self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap) self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None self.sampler_noises = None
self.sampler_noise_index = 0 self.sampler_noise_index = 0
self.stop_at = None self.stop_at = None
self.eta = None
self.default_eta = 1.0
def callback_state(self, d): def callback_state(self, d):
store_latent(d["denoised"]) store_latent(d["denoised"])
@ -252,22 +265,12 @@ class KDiffusionSampler:
self.sampler_noise_index += 1 self.sampler_noise_index += 1
return res return res
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None): def initialize(self, p):
steps, t_enc = setup_img2img_steps(p, steps)
sigmas = self.model_wrap.get_sigmas(steps)
noise = noise * sigmas[steps - t_enc - 1]
xi = x + noise
sigma_sched = sigmas[steps - t_enc - 1:]
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.init_latent = x
self.model_wrap.step = 0 self.model_wrap.step = 0
self.sampler_noise_index = 0 self.sampler_noise_index = 0
self.eta = p.eta or opts.eta_ancestral
if hasattr(k_diffusion.sampling, 'trange'): if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs) k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs)
@ -276,9 +279,28 @@ class KDiffusionSampler:
k_diffusion.sampling.torch = TorchHijack(self) k_diffusion.sampling.torch = TorchHijack(self)
extra_params_kwargs = {} extra_params_kwargs = {}
for val in self.extra_params: for param_name in self.extra_params:
if hasattr(p,val): if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[val] = getattr(p,val) extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
extra_params_kwargs['eta'] = self.eta
return extra_params_kwargs
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
steps, t_enc = setup_img2img_steps(p, steps)
sigmas = self.model_wrap.get_sigmas(steps)
noise = noise * sigmas[steps - t_enc - 1]
xi = x + noise
extra_params_kwargs = self.initialize(p)
sigma_sched = sigmas[steps - t_enc - 1:]
self.model_wrap_cfg.init_latent = x
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
@ -288,21 +310,14 @@ class KDiffusionSampler:
sigmas = self.model_wrap.get_sigmas(steps) sigmas = self.model_wrap.get_sigmas(steps)
x = x * sigmas[0] x = x * sigmas[0]
self.model_wrap_cfg.step = 0 extra_params_kwargs = self.initialize(p)
self.sampler_noise_index = 0 if 'sigma_min' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
if hasattr(k_diffusion.sampling, 'trange'): extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs) if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = steps
if self.sampler_noises is not None: else:
k_diffusion.sampling.torch = TorchHijack(self) extra_params_kwargs['sigmas'] = sigmas
samples = self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
extra_params_kwargs = {}
for val in self.extra_params:
if hasattr(p,val):
extra_params_kwargs[val] = getattr(p,val)
samples = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
return samples return samples

View File

@ -155,6 +155,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"), "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
"use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"), "use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
})) }))
options_templates.update(options_section(('saving-paths', "Paths for saving"), { options_templates.update(options_section(('saving-paths', "Paths for saving"), {
@ -182,7 +183,6 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
"SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}), "SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
"SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}), "ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
"ldsr_pre_down": OptionInfo(1, "LDSR Pre-process downssample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}),
})) }))
@ -190,7 +190,6 @@ options_templates.update(options_section(('face-restoration', "Face restoration"
"face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
"code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
"save_selected_only": OptionInfo(False, "When using 'Save' button, only save a single selected image"),
})) }))
options_templates.update(options_section(('system', "System"), { options_templates.update(options_section(('system', "System"), {
@ -200,12 +199,13 @@ options_templates.update(options_section(('system', "System"), {
})) }))
options_templates.update(options_section(('sd', "Stable Diffusion"), { options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Radio, lambda: {"choices": [x.title for x in modules.sd_models.checkpoints_list.values()]}), "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Radio, lambda: {"choices": modules.sd_models.checkpoint_tiles()}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."), "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."), "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
"enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text and [text] to make it pay less attention"), "enable_emphasis": OptionInfo(True, "Eemphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"filter_nsfw": OptionInfo(False, "Filter NSFW content"), "filter_nsfw": OptionInfo(False, "Filter NSFW content"),
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
@ -231,8 +231,9 @@ options_templates.update(options_section(('ui', "User interface"), {
})) }))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), { options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
"ddim_eta": OptionInfo(0.0, "DDIM eta", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform','quad']}), "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),

View File

@ -9,10 +9,13 @@ import random
import sys import sys
import time import time
import traceback import traceback
import platform
import subprocess as sp
import numpy as np import numpy as np
import torch import torch
from PIL import Image from PIL import Image, PngImagePlugin
import piexif
import gradio as gr import gradio as gr
import gradio.utils import gradio.utils
@ -22,6 +25,7 @@ from modules.paths import script_path
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
import modules.shared as shared import modules.shared as shared
from modules.sd_samplers import samplers, samplers_for_img2img from modules.sd_samplers import samplers, samplers_for_img2img
from modules.sd_hijack import model_hijack
import modules.ldsr_model import modules.ldsr_model
import modules.scripts import modules.scripts
import modules.gfpgan_model import modules.gfpgan_model
@ -60,7 +64,7 @@ random_symbol = '\U0001f3b2\ufe0f' # 🎲️
reuse_symbol = '\u267b\ufe0f' # ♻️ reuse_symbol = '\u267b\ufe0f' # ♻️
art_symbol = '\U0001f3a8' # 🎨 art_symbol = '\U0001f3a8' # 🎨
paste_symbol = '\u2199\ufe0f' # ↙ paste_symbol = '\u2199\ufe0f' # ↙
folder_symbol = '\uD83D\uDCC2'
def plaintext_to_html(text): def plaintext_to_html(text):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>" text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
@ -97,10 +101,11 @@ def save_files(js_data, images, index):
filenames = [] filenames = []
data = json.loads(js_data) data = json.loads(js_data)
if index > -1 and opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
if index > -1 and opts.save_selected_only and (index > 0 or not opts.return_grid): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
images = [images[index]] images = [images[index]]
data["seed"] += (index - 1 if opts.return_grid else index) infotexts = [data["infotexts"][index]]
else:
infotexts = data["infotexts"]
with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file: with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
at_start = file.tell() == 0 at_start = file.tell() == 0
@ -109,15 +114,26 @@ def save_files(js_data, images, index):
writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"]) writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"])
filename_base = str(int(time.time() * 1000)) filename_base = str(int(time.time() * 1000))
extension = opts.samples_format.lower()
for i, filedata in enumerate(images): for i, filedata in enumerate(images):
filename = filename_base + ("" if len(images) == 1 else "-" + str(i + 1)) + ".png" filename = filename_base + ("" if len(images) == 1 else "-" + str(i + 1)) + f".{extension}"
filepath = os.path.join(opts.outdir_save, filename) filepath = os.path.join(opts.outdir_save, filename)
if filedata.startswith("data:image/png;base64,"): if filedata.startswith("data:image/png;base64,"):
filedata = filedata[len("data:image/png;base64,"):] filedata = filedata[len("data:image/png;base64,"):]
with open(filepath, "wb") as imgfile: image = Image.open(io.BytesIO(base64.decodebytes(filedata.encode('utf-8'))))
imgfile.write(base64.decodebytes(filedata.encode('utf-8'))) if opts.enable_pnginfo and extension == 'png':
pnginfo = PngImagePlugin.PngInfo()
pnginfo.add_text('parameters', infotexts[i])
image.save(filepath, pnginfo=pnginfo)
else:
image.save(filepath, quality=opts.jpeg_quality)
if opts.enable_pnginfo and extension in ("jpg", "jpeg", "webp"):
piexif.insert(piexif.dump({"Exif": {
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(infotexts[i], encoding="unicode")
}}), filepath)
filenames.append(filename) filenames.append(filename)
@ -329,6 +345,10 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info:
outputs=[seed, dummy_component] outputs=[seed, dummy_component]
) )
def update_token_counter(text):
tokens, token_count, max_length = model_hijack.tokenize(text)
style_class = ' class="red"' if (token_count > max_length) else ""
return f"<span {style_class}>{token_count}/{max_length}</span>"
def create_toprow(is_img2img): def create_toprow(is_img2img):
id_part = "img2img" if is_img2img else "txt2img" id_part = "img2img" if is_img2img else "txt2img"
@ -338,11 +358,14 @@ def create_toprow(is_img2img):
with gr.Row(): with gr.Row():
with gr.Column(scale=80): with gr.Column(scale=80):
with gr.Row(): with gr.Row():
prompt = gr.Textbox(label="Prompt", elem_id="prompt", show_label=False, placeholder="Prompt", lines=2) prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, placeholder="Prompt", lines=2)
with gr.Column(scale=1, elem_id="roll_col"): with gr.Column(scale=1, elem_id="roll_col"):
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0) roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
paste = gr.Button(value=paste_symbol, elem_id="paste") paste = gr.Button(value=paste_symbol, elem_id="paste")
token_counter = gr.HTML(value="<span></span>", elem_id=f"{id_part}_token_counter")
hidden_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
hidden_button.click(fn=update_token_counter, inputs=[prompt], outputs=[token_counter])
with gr.Column(scale=10, elem_id="style_pos_col"): with gr.Column(scale=10, elem_id="style_pos_col"):
prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1)
@ -449,6 +472,8 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger):
send_to_img2img = gr.Button('Send to img2img') send_to_img2img = gr.Button('Send to img2img')
send_to_inpaint = gr.Button('Send to inpaint') send_to_inpaint = gr.Button('Send to inpaint')
send_to_extras = gr.Button('Send to extras') send_to_extras = gr.Button('Send to extras')
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id)
with gr.Group(): with gr.Group():
html_info = gr.HTML() html_info = gr.HTML()
@ -625,6 +650,8 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger):
img2img_send_to_img2img = gr.Button('Send to img2img') img2img_send_to_img2img = gr.Button('Send to img2img')
img2img_send_to_inpaint = gr.Button('Send to inpaint') img2img_send_to_inpaint = gr.Button('Send to inpaint')
img2img_send_to_extras = gr.Button('Send to extras') img2img_send_to_extras = gr.Button('Send to extras')
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id)
with gr.Group(): with gr.Group():
html_info = gr.HTML() html_info = gr.HTML()
@ -797,6 +824,8 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger):
html_info = gr.HTML() html_info = gr.HTML()
extras_send_to_img2img = gr.Button('Send to img2img') extras_send_to_img2img = gr.Button('Send to img2img')
extras_send_to_inpaint = gr.Button('Send to inpaint') extras_send_to_inpaint = gr.Button('Send to inpaint')
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else ''
open_extras_folder = gr.Button('Open output directory', elem_id=button_id)
submit.click( submit.click(
fn=run_extras, fn=run_extras,
@ -857,30 +886,20 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger):
with gr.Blocks() as modelmerger_interface: with gr.Blocks() as modelmerger_interface:
with gr.Row().style(equal_height=False): with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'): with gr.Column(variant='panel'):
gr.HTML(value="<p>A merger of the two checkpoints will be generated in your <b>/models</b> directory.</p>") gr.HTML(value="<p>A merger of the two checkpoints will be generated in your <b>checkpoint</b> directory.</p>")
modelname_0 = gr.Textbox(elem_id="modelmerger_modelname_0", label="Model Name (to)") with gr.Row():
modelname_1 = gr.Textbox(elem_id="modelmerger_modelname_1", label="Model Name (from)") primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary Model Name")
interp_method = gr.Radio(choices=["Weighted Sum", "Sigmoid"], value="Weighted Sum", label="Interpolation Method") secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary Model Name")
custom_name = gr.Textbox(label="Custom Name (Optional)")
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Interpolation Amount', value=0.3) interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Interpolation Amount', value=0.3)
submit = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary') interp_method = gr.Radio(choices=["Weighted Sum", "Sigmoid", "Inverse Sigmoid"], value="Weighted Sum", label="Interpolation Method")
save_as_half = gr.Checkbox(value=False, label="Safe as float16")
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary')
with gr.Column(variant='panel'): with gr.Column(variant='panel'):
submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False) submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False)
submit.click(
fn=run_modelmerger,
inputs=[
modelname_0,
modelname_1,
interp_method,
interp_amount
],
outputs=[
submit_result,
]
)
def create_setting_component(key): def create_setting_component(key):
def fun(): def fun():
return opts.data[key] if key in opts.data else opts.data_labels[key].default return opts.data[key] if key in opts.data else opts.data_labels[key].default
@ -904,6 +923,17 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger):
return comp(label=info.label, value=fun, **(args or {})) return comp(label=info.label, value=fun, **(args or {}))
components = [] components = []
component_dict = {}
def open_folder(f):
if not shared.cmd_opts.hide_ui_dir_config:
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
else:
sp.Popen(["xdg-open", path])
def run_settings(*args): def run_settings(*args):
changed = 0 changed = 0
@ -959,7 +989,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger):
gr.HTML(elem_id="settings_header_text_{}".format(item.section[0]), value='<h1 class="gr-button-lg">{}</h1>'.format(item.section[1])) gr.HTML(elem_id="settings_header_text_{}".format(item.section[0]), value='<h1 class="gr-button-lg">{}</h1>'.format(item.section[1]))
components.append(create_setting_component(k)) component = create_setting_component(k)
component_dict[k] = component
components.append(component)
items_displayed += 1 items_displayed += 1
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications") request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
@ -1009,7 +1041,34 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger):
inputs=components, inputs=components,
outputs=[result, text_settings], outputs=[result, text_settings],
) )
def modelmerger(*args):
try:
results = run_modelmerger(*args)
except Exception as e:
print("Error loading/saving model file:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
modules.sd_models.list_models() #To remove the potentially missing models from the list
return ["Error loading/saving model file. It doesn't exist or the name contains illegal characters"] + [gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(3)]
return results
modelmerger_merge.click(
fn=modelmerger,
inputs=[
primary_model_name,
secondary_model_name,
interp_method,
interp_amount,
save_as_half,
custom_name,
],
outputs=[
submit_result,
primary_model_name,
secondary_model_name,
component_dict['sd_model_checkpoint'],
]
)
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration', 'Seed', 'Size-1', 'Size-2'] paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration', 'Seed', 'Size-1', 'Size-2']
txt2img_fields = [field for field,name in txt2img_paste_fields if name in paste_field_names] txt2img_fields = [field for field,name in txt2img_paste_fields if name in paste_field_names]
img2img_fields = [field for field,name in img2img_paste_fields if name in paste_field_names] img2img_fields = [field for field,name in img2img_paste_fields if name in paste_field_names]
@ -1048,6 +1107,24 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger):
outputs=[extras_image], outputs=[extras_image],
) )
open_txt2img_folder.click(
fn=lambda: open_folder(opts.outdir_samples or opts.outdir_txt2img_samples),
inputs=[],
outputs=[],
)
open_img2img_folder.click(
fn=lambda: open_folder(opts.outdir_samples or opts.outdir_img2img_samples),
inputs=[],
outputs=[],
)
open_extras_folder.click(
fn=lambda: open_folder(opts.outdir_samples or opts.outdir_extras_samples),
inputs=[],
outputs=[],
)
img2img_send_to_extras.click( img2img_send_to_extras.click(
fn=lambda x: image_from_url_text(x), fn=lambda x: image_from_url_text(x),
_js="extract_image_from_gallery_extras", _js="extract_image_from_gallery_extras",

View File

@ -4,9 +4,8 @@ fairscale==0.4.4
fonts fonts
font-roboto font-roboto
gfpgan gfpgan
gradio gradio==3.4b3
invisible-watermark invisible-watermark
git+https://github.com/crowsonkb/k-diffusion.git
numpy numpy
omegaconf omegaconf
piexif piexif
@ -16,5 +15,12 @@ realesrgan
scikit-image>=0.19 scikit-image>=0.19
git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379 git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379
timm==0.4.12 timm==0.4.12
transformers transformers==4.19.2
torch torch
einops
jsonmerge
clean-fid
git+https://github.com/openai/CLIP@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
resize-right
torchdiffeq
kornia

View File

@ -14,4 +14,11 @@ fonts
font-roboto font-roboto
timm==0.6.7 timm==0.6.7
fairscale==0.4.9 fairscale==0.4.9
piexif==1.1.3 piexif==1.1.3
einops==0.4.1
jsonmerge==1.8.0
clean-fid==0.1.29
git+https://github.com/openai/CLIP@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
resize-right==0.0.2
torchdiffeq==0.2.3
kornia==0.6.7

View File

@ -87,12 +87,12 @@ axis_options = [
AxisOption("Prompt S/R", str, apply_prompt, format_value), AxisOption("Prompt S/R", str, apply_prompt, format_value),
AxisOption("Sampler", str, apply_sampler, format_value), AxisOption("Sampler", str, apply_sampler, format_value),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value), AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label), AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label), AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label), AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label), AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label),
AxisOption("DDIM Eta", float, apply_field("ddim_eta"), format_value_add_label), AxisOption("Eta", float, apply_field("eta"), format_value_add_label),
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label),# as it is now all AxisOptionImg2Img items must go after AxisOption ones AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
] ]
@ -159,6 +159,9 @@ class Script(scripts.Script):
p.batch_size = 1 p.batch_size = 1
def process_axis(opt, vals): def process_axis(opt, vals):
if opt.label == 'Nothing':
return [0]
valslist = [x.strip() for x in vals.split(",")] valslist = [x.strip() for x in vals.split(",")]
if opt.type == int: if opt.type == int:

View File

@ -1,5 +1,11 @@
.output-html p {margin: 0 0.5em;} .output-html p {margin: 0 0.5em;}
.row > *,
.row > .gr-form > * {
min-width: min(120px, 100%);
flex: 1 1 0%;
}
.performance { .performance {
font-size: 0.85em; font-size: 0.85em;
color: #444; color: #444;
@ -43,13 +49,17 @@
margin-right: auto; margin-right: auto;
} }
#random_seed, #random_subseed, #reuse_seed, #reuse_subseed{ #random_seed, #random_subseed, #reuse_seed, #reuse_subseed, #open_folder{
min-width: auto; min-width: auto;
flex-grow: 0; flex-grow: 0;
padding-left: 0.25em; padding-left: 0.25em;
padding-right: 0.25em; padding-right: 0.25em;
} }
#hidden_element{
display: none;
}
#seed_row, #subseed_row{ #seed_row, #subseed_row{
gap: 0.5rem; gap: 0.5rem;
} }
@ -389,3 +399,7 @@ input[type="range"]{
border-radius: 8px; border-radius: 8px;
display: none; display: none;
} }
.red {
color: red;
}

View File

@ -1,4 +1,8 @@
import os import os
import threading
from modules import devices
from modules.paths import script_path
import signal import signal
import threading import threading
import modules.paths import modules.paths
@ -44,6 +48,8 @@ def wrap_queued_call(func):
def wrap_gradio_gpu_call(func): def wrap_gradio_gpu_call(func):
def f(*args, **kwargs): def f(*args, **kwargs):
devices.torch_gc()
shared.state.sampling_step = 0 shared.state.sampling_step = 0
shared.state.job_count = -1 shared.state.job_count = -1
shared.state.job_no = 0 shared.state.job_no = 0
@ -59,6 +65,8 @@ def wrap_gradio_gpu_call(func):
shared.state.job = "" shared.state.job = ""
shared.state.job_count = 0 shared.state.job_count = 0
devices.torch_gc()
return res return res
return modules.ui.wrap_gradio_call(f) return modules.ui.wrap_gradio_call(f)