an option to do exactly the amount of specified steps in img2img
This commit is contained in:
parent
be0f82df12
commit
e49b1c5d73
@ -38,6 +38,17 @@ samplers = [
|
|||||||
samplers_for_img2img = [x for x in samplers if x.name != 'PLMS']
|
samplers_for_img2img = [x for x in samplers if x.name != 'PLMS']
|
||||||
|
|
||||||
|
|
||||||
|
def setup_img2img_steps(p):
|
||||||
|
if opts.img2img_fix_steps:
|
||||||
|
steps = int(p.steps / min(p.denoising_strength, 0.999))
|
||||||
|
t_enc = p.steps - 1
|
||||||
|
else:
|
||||||
|
steps = p.steps
|
||||||
|
t_enc = int(min(p.denoising_strength, 0.999) * steps)
|
||||||
|
|
||||||
|
return steps, t_enc
|
||||||
|
|
||||||
|
|
||||||
def sample_to_image(samples):
|
def sample_to_image(samples):
|
||||||
x_sample = shared.sd_model.decode_first_stage(samples[0:1].type(shared.sd_model.dtype))[0]
|
x_sample = shared.sd_model.decode_first_stage(samples[0:1].type(shared.sd_model.dtype))[0]
|
||||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
@ -105,13 +116,13 @@ class VanillaStableDiffusionSampler:
|
|||||||
return res
|
return res
|
||||||
|
|
||||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
||||||
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
steps, t_enc = setup_img2img_steps(p)
|
||||||
|
|
||||||
# existing code fails with cetain step counts, like 9
|
# existing code fails with cetain step counts, like 9
|
||||||
try:
|
try:
|
||||||
self.sampler.make_schedule(ddim_num_steps=p.steps, verbose=False)
|
self.sampler.make_schedule(ddim_num_steps=steps, verbose=False)
|
||||||
except Exception:
|
except Exception:
|
||||||
self.sampler.make_schedule(ddim_num_steps=p.steps+1, verbose=False)
|
self.sampler.make_schedule(ddim_num_steps=steps+1, verbose=False)
|
||||||
|
|
||||||
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
|
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
|
||||||
|
|
||||||
@ -230,14 +241,15 @@ class KDiffusionSampler:
|
|||||||
return res
|
return res
|
||||||
|
|
||||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
||||||
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
steps, t_enc = setup_img2img_steps(p)
|
||||||
sigmas = self.model_wrap.get_sigmas(p.steps)
|
|
||||||
|
|
||||||
noise = noise * sigmas[p.steps - t_enc - 1]
|
sigmas = self.model_wrap.get_sigmas(steps)
|
||||||
|
|
||||||
|
noise = noise * sigmas[steps - t_enc - 1]
|
||||||
|
|
||||||
xi = x + noise
|
xi = x + noise
|
||||||
|
|
||||||
sigma_sched = sigmas[p.steps - t_enc - 1:]
|
sigma_sched = sigmas[steps - t_enc - 1:]
|
||||||
|
|
||||||
self.model_wrap_cfg.mask = p.mask
|
self.model_wrap_cfg.mask = p.mask
|
||||||
self.model_wrap_cfg.nmask = p.nmask
|
self.model_wrap_cfg.nmask = p.nmask
|
||||||
|
@ -125,6 +125,7 @@ class Options:
|
|||||||
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
|
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
|
||||||
"add_model_hash_to_info": OptionInfo(False, "Add model hash to generation information"),
|
"add_model_hash_to_info": OptionInfo(False, "Add model hash to generation information"),
|
||||||
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
||||||
|
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normaly you'd do less with less denoising)."),
|
||||||
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
|
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
|
||||||
"font": OptionInfo("", "Font for image grids that have text"),
|
"font": OptionInfo("", "Font for image grids that have text"),
|
||||||
"enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
"enable_emphasis": OptionInfo(True, "Use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
||||||
|
Loading…
Reference in New Issue
Block a user