Merge branch 'master' into master
This commit is contained in:
commit
f42e0aae6d
2
.github/ISSUE_TEMPLATE/feature_request.md
vendored
2
.github/ISSUE_TEMPLATE/feature_request.md
vendored
@ -2,7 +2,7 @@
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: ''
|
||||
labels: 'suggestion'
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
28
.github/PULL_REQUEST_TEMPLATE/pull_request_template.md
vendored
Normal file
28
.github/PULL_REQUEST_TEMPLATE/pull_request_template.md
vendored
Normal file
@ -0,0 +1,28 @@
|
||||
# Please read the [contributing wiki page](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) before submitting a pull request!
|
||||
|
||||
If you have a large change, pay special attention to this paragraph:
|
||||
|
||||
> Before making changes, if you think that your feature will result in more than 100 lines changing, find me and talk to me about the feature you are proposing. It pains me to reject the hard work someone else did, but I won't add everything to the repo, and it's better if the rejection happens before you have to waste time working on the feature.
|
||||
|
||||
Otherwise, after making sure you're following the rules described in wiki page, remove this section and continue on.
|
||||
|
||||
**Describe what this pull request is trying to achieve.**
|
||||
|
||||
A clear and concise description of what you're trying to accomplish with this, so your intent doesn't have to be extracted from your code.
|
||||
|
||||
**Additional notes and description of your changes**
|
||||
|
||||
More technical discussion about your changes go here, plus anything that a maintainer might have to specifically take a look at, or be wary of.
|
||||
|
||||
**Environment this was tested in**
|
||||
|
||||
List the environment you have developed / tested this on. As per the contributing page, changes should be able to work on Windows out of the box.
|
||||
- OS: [e.g. Windows, Linux]
|
||||
- Browser [e.g. chrome, safari]
|
||||
- Graphics card [e.g. NVIDIA RTX 2080 8GB, AMD RX 6600 8GB]
|
||||
|
||||
**Screenshots or videos of your changes**
|
||||
|
||||
If applicable, screenshots or a video showing off your changes. If it edits an existing UI, it should ideally contain a comparison of what used to be there, before your changes were made.
|
||||
|
||||
This is **required** for anything that touches the user interface.
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -17,6 +17,7 @@ __pycache__
|
||||
/webui.settings.bat
|
||||
/embeddings
|
||||
/styles.csv
|
||||
/params.txt
|
||||
/styles.csv.bak
|
||||
/webui-user.bat
|
||||
/webui-user.sh
|
||||
@ -25,3 +26,4 @@ __pycache__
|
||||
/.idea
|
||||
notification.mp3
|
||||
/SwinIR
|
||||
/textual_inversion
|
||||
|
1
CODEOWNERS
Normal file
1
CODEOWNERS
Normal file
@ -0,0 +1 @@
|
||||
* @AUTOMATIC1111
|
35
README.md
35
README.md
@ -11,12 +11,13 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
||||
- One click install and run script (but you still must install python and git)
|
||||
- Outpainting
|
||||
- Inpainting
|
||||
- Prompt
|
||||
- Stable Diffusion upscale
|
||||
- Prompt Matrix
|
||||
- Stable Diffusion Upscale
|
||||
- Attention, specify parts of text that the model should pay more attention to
|
||||
- a man in a ((txuedo)) - will pay more attentinoto tuxedo
|
||||
- a man in a (txuedo:1.21) - alternative syntax
|
||||
- Loopback, run img2img procvessing multiple times
|
||||
- a man in a ((tuxedo)) - will pay more attention to tuxedo
|
||||
- a man in a (tuxedo:1.21) - alternative syntax
|
||||
- select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
|
||||
- Loopback, run img2img processing multiple times
|
||||
- X/Y plot, a way to draw a 2 dimensional plot of images with different parameters
|
||||
- Textual Inversion
|
||||
- have as many embeddings as you want and use any names you like for them
|
||||
@ -27,23 +28,25 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
||||
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
||||
- RealESRGAN, neural network upscaler
|
||||
- ESRGAN, neural network upscaler with a lot of third party models
|
||||
- SwinIR, neural network upscaler
|
||||
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
|
||||
- LDSR, Latent diffusion super resolution upscaling
|
||||
- Resizing aspect ratio options
|
||||
- Sampling method selection
|
||||
- Adjust sampler eta values (noise multiplier)
|
||||
- More advanced noise setting options
|
||||
- Interrupt processing at any time
|
||||
- 4GB video card support (also reports of 2GB working)
|
||||
- Correct seeds for batches
|
||||
- Correct seeds for batches
|
||||
- Prompt length validation
|
||||
- get length of prompt in tokensas you type
|
||||
- get a warning after geenration if some text was truncated
|
||||
- get length of prompt in tokens as you type
|
||||
- get a warning after generation if some text was truncated
|
||||
- Generation parameters
|
||||
- parameters you used to generate images are saved with that image
|
||||
- in PNG chunks for PNG, in EXIF for JPEG
|
||||
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
|
||||
- can be disabled in settings
|
||||
- Settings page
|
||||
- Running arbitrary python code from UI (must run with commandline flag to enable)
|
||||
- Running arbitrary python code from UI (must run with --allow-code to enable)
|
||||
- Mouseover hints for most UI elements
|
||||
- Possible to change defaults/mix/max/step values for UI elements via text config
|
||||
- Random artist button
|
||||
@ -61,6 +64,12 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
||||
- Reloading checkpoints on the fly
|
||||
- Checkpoint Merger, a tab that allows you to merge two checkpoints into one
|
||||
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
|
||||
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
|
||||
- separate prompts using uppercase `AND`
|
||||
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
||||
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
||||
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
|
||||
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
|
||||
|
||||
## Installation and Running
|
||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||
@ -110,11 +119,17 @@ The documentation was moved from this README over to the project's [wiki](https:
|
||||
- CodeFormer - https://github.com/sczhou/CodeFormer
|
||||
- ESRGAN - https://github.com/xinntao/ESRGAN
|
||||
- SwinIR - https://github.com/JingyunLiang/SwinIR
|
||||
- Swin2SR - https://github.com/mv-lab/swin2sr
|
||||
- LDSR - https://github.com/Hafiidz/latent-diffusion
|
||||
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
|
||||
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
|
||||
- InvokeAI, lstein - Cross Attention layer optimization - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
|
||||
- Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
|
||||
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
||||
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
||||
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
||||
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
|
||||
- xformers - https://github.com/facebookresearch/xformers
|
||||
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
|
||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||
- (You)
|
||||
|
@ -1045,7 +1045,6 @@ Bakemono Zukushi,0.67051035,anime
|
||||
Lucy Madox Brown,0.67032814,fineart
|
||||
Paul Wonner,0.6700563,scribbles
|
||||
Guido Borelli Da Caluso,0.66966087,digipa-high-impact
|
||||
Guido Borelli da Caluso,0.66966087,digipa-high-impact
|
||||
Emil Alzamora,0.5844039,nudity
|
||||
Heinrich Brocksieper,0.64469147,fineart
|
||||
Dan Smith,0.669563,digipa-high-impact
|
||||
|
|
@ -3,9 +3,9 @@ channels:
|
||||
- pytorch
|
||||
- defaults
|
||||
dependencies:
|
||||
- python=3.8.5
|
||||
- pip=20.3
|
||||
- python=3.10
|
||||
- pip=22.2.2
|
||||
- cudatoolkit=11.3
|
||||
- pytorch=1.11.0
|
||||
- torchvision=0.12.0
|
||||
- numpy=1.19.2
|
||||
- pytorch=1.12.1
|
||||
- torchvision=0.13.1
|
||||
- numpy=1.23.1
|
177
javascript/contextMenus.js
Normal file
177
javascript/contextMenus.js
Normal file
@ -0,0 +1,177 @@
|
||||
|
||||
contextMenuInit = function(){
|
||||
let eventListenerApplied=false;
|
||||
let menuSpecs = new Map();
|
||||
|
||||
const uid = function(){
|
||||
return Date.now().toString(36) + Math.random().toString(36).substr(2);
|
||||
}
|
||||
|
||||
function showContextMenu(event,element,menuEntries){
|
||||
let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
|
||||
let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
|
||||
|
||||
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||
if(oldMenu){
|
||||
oldMenu.remove()
|
||||
}
|
||||
|
||||
let tabButton = uiCurrentTab
|
||||
let baseStyle = window.getComputedStyle(tabButton)
|
||||
|
||||
const contextMenu = document.createElement('nav')
|
||||
contextMenu.id = "context-menu"
|
||||
contextMenu.style.background = baseStyle.background
|
||||
contextMenu.style.color = baseStyle.color
|
||||
contextMenu.style.fontFamily = baseStyle.fontFamily
|
||||
contextMenu.style.top = posy+'px'
|
||||
contextMenu.style.left = posx+'px'
|
||||
|
||||
|
||||
|
||||
const contextMenuList = document.createElement('ul')
|
||||
contextMenuList.className = 'context-menu-items';
|
||||
contextMenu.append(contextMenuList);
|
||||
|
||||
menuEntries.forEach(function(entry){
|
||||
let contextMenuEntry = document.createElement('a')
|
||||
contextMenuEntry.innerHTML = entry['name']
|
||||
contextMenuEntry.addEventListener("click", function(e) {
|
||||
entry['func']();
|
||||
})
|
||||
contextMenuList.append(contextMenuEntry);
|
||||
|
||||
})
|
||||
|
||||
gradioApp().getRootNode().appendChild(contextMenu)
|
||||
|
||||
let menuWidth = contextMenu.offsetWidth + 4;
|
||||
let menuHeight = contextMenu.offsetHeight + 4;
|
||||
|
||||
let windowWidth = window.innerWidth;
|
||||
let windowHeight = window.innerHeight;
|
||||
|
||||
if ( (windowWidth - posx) < menuWidth ) {
|
||||
contextMenu.style.left = windowWidth - menuWidth + "px";
|
||||
}
|
||||
|
||||
if ( (windowHeight - posy) < menuHeight ) {
|
||||
contextMenu.style.top = windowHeight - menuHeight + "px";
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
function appendContextMenuOption(targetEmementSelector,entryName,entryFunction){
|
||||
|
||||
currentItems = menuSpecs.get(targetEmementSelector)
|
||||
|
||||
if(!currentItems){
|
||||
currentItems = []
|
||||
menuSpecs.set(targetEmementSelector,currentItems);
|
||||
}
|
||||
let newItem = {'id':targetEmementSelector+'_'+uid(),
|
||||
'name':entryName,
|
||||
'func':entryFunction,
|
||||
'isNew':true}
|
||||
|
||||
currentItems.push(newItem)
|
||||
return newItem['id']
|
||||
}
|
||||
|
||||
function removeContextMenuOption(uid){
|
||||
menuSpecs.forEach(function(v,k) {
|
||||
let index = -1
|
||||
v.forEach(function(e,ei){if(e['id']==uid){index=ei}})
|
||||
if(index>=0){
|
||||
v.splice(index, 1);
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
function addContextMenuEventListener(){
|
||||
if(eventListenerApplied){
|
||||
return;
|
||||
}
|
||||
gradioApp().addEventListener("click", function(e) {
|
||||
let source = e.composedPath()[0]
|
||||
if(source.id && source.id.indexOf('check_progress')>-1){
|
||||
return
|
||||
}
|
||||
|
||||
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||
if(oldMenu){
|
||||
oldMenu.remove()
|
||||
}
|
||||
});
|
||||
gradioApp().addEventListener("contextmenu", function(e) {
|
||||
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||
if(oldMenu){
|
||||
oldMenu.remove()
|
||||
}
|
||||
menuSpecs.forEach(function(v,k) {
|
||||
if(e.composedPath()[0].matches(k)){
|
||||
showContextMenu(e,e.composedPath()[0],v)
|
||||
e.preventDefault()
|
||||
return
|
||||
}
|
||||
})
|
||||
});
|
||||
eventListenerApplied=true
|
||||
|
||||
}
|
||||
|
||||
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
|
||||
}
|
||||
|
||||
initResponse = contextMenuInit();
|
||||
appendContextMenuOption = initResponse[0];
|
||||
removeContextMenuOption = initResponse[1];
|
||||
addContextMenuEventListener = initResponse[2];
|
||||
|
||||
(function(){
|
||||
//Start example Context Menu Items
|
||||
let generateOnRepeat = function(genbuttonid,interruptbuttonid){
|
||||
let genbutton = gradioApp().querySelector(genbuttonid);
|
||||
let interruptbutton = gradioApp().querySelector(interruptbuttonid);
|
||||
if(!interruptbutton.offsetParent){
|
||||
genbutton.click();
|
||||
}
|
||||
clearInterval(window.generateOnRepeatInterval)
|
||||
window.generateOnRepeatInterval = setInterval(function(){
|
||||
if(!interruptbutton.offsetParent){
|
||||
genbutton.click();
|
||||
}
|
||||
},
|
||||
500)
|
||||
}
|
||||
|
||||
appendContextMenuOption('#txt2img_generate','Generate forever',function(){
|
||||
generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
|
||||
})
|
||||
appendContextMenuOption('#img2img_generate','Generate forever',function(){
|
||||
generateOnRepeat('#img2img_generate','#img2img_interrupt');
|
||||
})
|
||||
|
||||
let cancelGenerateForever = function(){
|
||||
clearInterval(window.generateOnRepeatInterval)
|
||||
}
|
||||
|
||||
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
||||
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
||||
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
||||
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
||||
|
||||
appendContextMenuOption('#roll','Roll three',
|
||||
function(){
|
||||
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
|
||||
setTimeout(function(){rollbutton.click()},100)
|
||||
setTimeout(function(){rollbutton.click()},200)
|
||||
setTimeout(function(){rollbutton.click()},300)
|
||||
}
|
||||
)
|
||||
})();
|
||||
//End example Context Menu Items
|
||||
|
||||
onUiUpdate(function(){
|
||||
addContextMenuEventListener()
|
||||
});
|
5
javascript/dragdrop.js
vendored
5
javascript/dragdrop.js
vendored
@ -43,7 +43,7 @@ function dropReplaceImage( imgWrap, files ) {
|
||||
window.document.addEventListener('dragover', e => {
|
||||
const target = e.composedPath()[0];
|
||||
const imgWrap = target.closest('[data-testid="image"]');
|
||||
if ( !imgWrap ) {
|
||||
if ( !imgWrap && target.placeholder != "Prompt") {
|
||||
return;
|
||||
}
|
||||
e.stopPropagation();
|
||||
@ -53,6 +53,9 @@ window.document.addEventListener('dragover', e => {
|
||||
|
||||
window.document.addEventListener('drop', e => {
|
||||
const target = e.composedPath()[0];
|
||||
if (target.placeholder === "Prompt") {
|
||||
return;
|
||||
}
|
||||
const imgWrap = target.closest('[data-testid="image"]');
|
||||
if ( !imgWrap ) {
|
||||
return;
|
||||
|
45
javascript/edit-attention.js
Normal file
45
javascript/edit-attention.js
Normal file
@ -0,0 +1,45 @@
|
||||
addEventListener('keydown', (event) => {
|
||||
let target = event.originalTarget || event.composedPath()[0];
|
||||
if (!target.hasAttribute("placeholder")) return;
|
||||
if (!target.placeholder.toLowerCase().includes("prompt")) return;
|
||||
|
||||
let plus = "ArrowUp"
|
||||
let minus = "ArrowDown"
|
||||
if (event.key != plus && event.key != minus) return;
|
||||
|
||||
selectionStart = target.selectionStart;
|
||||
selectionEnd = target.selectionEnd;
|
||||
if(selectionStart == selectionEnd) return;
|
||||
|
||||
event.preventDefault();
|
||||
|
||||
if (selectionStart == 0 || target.value[selectionStart - 1] != "(") {
|
||||
target.value = target.value.slice(0, selectionStart) +
|
||||
"(" + target.value.slice(selectionStart, selectionEnd) + ":1.0)" +
|
||||
target.value.slice(selectionEnd);
|
||||
|
||||
target.focus();
|
||||
target.selectionStart = selectionStart + 1;
|
||||
target.selectionEnd = selectionEnd + 1;
|
||||
|
||||
} else {
|
||||
end = target.value.slice(selectionEnd + 1).indexOf(")") + 1;
|
||||
weight = parseFloat(target.value.slice(selectionEnd + 1, selectionEnd + 1 + end));
|
||||
if (isNaN(weight)) return;
|
||||
if (event.key == minus) weight -= 0.1;
|
||||
if (event.key == plus) weight += 0.1;
|
||||
|
||||
weight = parseFloat(weight.toPrecision(12));
|
||||
|
||||
target.value = target.value.slice(0, selectionEnd + 1) +
|
||||
weight +
|
||||
target.value.slice(selectionEnd + 1 + end - 1);
|
||||
|
||||
target.focus();
|
||||
target.selectionStart = selectionStart;
|
||||
target.selectionEnd = selectionEnd;
|
||||
}
|
||||
// Since we've modified a Gradio Textbox component manually, we need to simulate an `input` DOM event to ensure its
|
||||
// internal Svelte data binding remains in sync.
|
||||
target.dispatchEvent(new Event("input", { bubbles: true }));
|
||||
});
|
@ -14,8 +14,8 @@ titles = {
|
||||
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
|
||||
"\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomed",
|
||||
"\u{1f3a8}": "Add a random artist to the prompt.",
|
||||
"\u2199\ufe0f": "Read generation parameters from prompt into user interface.",
|
||||
"\uD83D\uDCC2": "Open images output directory",
|
||||
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
|
||||
"\u{1f4c2}": "Open images output directory",
|
||||
|
||||
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
|
||||
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",
|
||||
@ -35,6 +35,7 @@ titles = {
|
||||
"Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.",
|
||||
"Denoising strength change factor": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.",
|
||||
|
||||
"Skip": "Stop processing current image and continue processing.",
|
||||
"Interrupt": "Stop processing images and return any results accumulated so far.",
|
||||
"Save": "Write image to a directory (default - log/images) and generation parameters into csv file.",
|
||||
|
||||
@ -47,6 +48,7 @@ titles = {
|
||||
"Custom code": "Run Python code. Advanced user only. Must run program with --allow-code for this to work",
|
||||
|
||||
"Prompt S/R": "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others",
|
||||
"Prompt order": "Separate a list of words with commas, and the script will make a variation of prompt with those words for their every possible order",
|
||||
|
||||
"Tiling": "Produce an image that can be tiled.",
|
||||
"Tile overlap": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.",
|
||||
@ -77,6 +79,16 @@ titles = {
|
||||
"Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
|
||||
"Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.",
|
||||
|
||||
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
|
||||
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
|
||||
|
||||
"Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
|
||||
"Filename join string": "This string will be used to join split words into a single line if the option above is enabled.",
|
||||
|
||||
"Quicksettings list": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.",
|
||||
|
||||
"Weighted sum": "Result = A * (1 - M) + B * M",
|
||||
"Add difference": "Result = A + (B - C) * M",
|
||||
}
|
||||
|
||||
|
||||
|
19
javascript/imageParams.js
Normal file
19
javascript/imageParams.js
Normal file
@ -0,0 +1,19 @@
|
||||
window.onload = (function(){
|
||||
window.addEventListener('drop', e => {
|
||||
const target = e.composedPath()[0];
|
||||
const idx = selected_gallery_index();
|
||||
if (target.placeholder != "Prompt") return;
|
||||
|
||||
let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image";
|
||||
|
||||
e.stopPropagation();
|
||||
e.preventDefault();
|
||||
const imgParent = gradioApp().getElementById(prompt_target);
|
||||
const files = e.dataTransfer.files;
|
||||
const fileInput = imgParent.querySelector('input[type="file"]');
|
||||
if ( fileInput ) {
|
||||
fileInput.files = files;
|
||||
fileInput.dispatchEvent(new Event('change'));
|
||||
}
|
||||
});
|
||||
});
|
206
javascript/images_history.js
Normal file
206
javascript/images_history.js
Normal file
@ -0,0 +1,206 @@
|
||||
var images_history_click_image = function(){
|
||||
if (!this.classList.contains("transform")){
|
||||
var gallery = images_history_get_parent_by_class(this, "images_history_cantainor");
|
||||
var buttons = gallery.querySelectorAll(".gallery-item");
|
||||
var i = 0;
|
||||
var hidden_list = [];
|
||||
buttons.forEach(function(e){
|
||||
if (e.style.display == "none"){
|
||||
hidden_list.push(i);
|
||||
}
|
||||
i += 1;
|
||||
})
|
||||
if (hidden_list.length > 0){
|
||||
setTimeout(images_history_hide_buttons, 10, hidden_list, gallery);
|
||||
}
|
||||
}
|
||||
images_history_set_image_info(this);
|
||||
}
|
||||
|
||||
var images_history_click_tab = function(){
|
||||
var tabs_box = gradioApp().getElementById("images_history_tab");
|
||||
if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
|
||||
gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_renew_page").click();
|
||||
tabs_box.classList.add(this.getAttribute("tabname"))
|
||||
}
|
||||
}
|
||||
|
||||
function images_history_disabled_del(){
|
||||
gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){
|
||||
btn.setAttribute('disabled','disabled');
|
||||
});
|
||||
}
|
||||
|
||||
function images_history_get_parent_by_class(item, class_name){
|
||||
var parent = item.parentElement;
|
||||
while(!parent.classList.contains(class_name)){
|
||||
parent = parent.parentElement;
|
||||
}
|
||||
return parent;
|
||||
}
|
||||
|
||||
function images_history_get_parent_by_tagname(item, tagname){
|
||||
var parent = item.parentElement;
|
||||
tagname = tagname.toUpperCase()
|
||||
while(parent.tagName != tagname){
|
||||
console.log(parent.tagName, tagname)
|
||||
parent = parent.parentElement;
|
||||
}
|
||||
return parent;
|
||||
}
|
||||
|
||||
function images_history_hide_buttons(hidden_list, gallery){
|
||||
var buttons = gallery.querySelectorAll(".gallery-item");
|
||||
var num = 0;
|
||||
buttons.forEach(function(e){
|
||||
if (e.style.display == "none"){
|
||||
num += 1;
|
||||
}
|
||||
});
|
||||
if (num == hidden_list.length){
|
||||
setTimeout(images_history_hide_buttons, 10, hidden_list, gallery);
|
||||
}
|
||||
for( i in hidden_list){
|
||||
buttons[hidden_list[i]].style.display = "none";
|
||||
}
|
||||
}
|
||||
|
||||
function images_history_set_image_info(button){
|
||||
var buttons = images_history_get_parent_by_tagname(button, "DIV").querySelectorAll(".gallery-item");
|
||||
var index = -1;
|
||||
var i = 0;
|
||||
buttons.forEach(function(e){
|
||||
if(e == button){
|
||||
index = i;
|
||||
}
|
||||
if(e.style.display != "none"){
|
||||
i += 1;
|
||||
}
|
||||
});
|
||||
var gallery = images_history_get_parent_by_class(button, "images_history_cantainor");
|
||||
var set_btn = gallery.querySelector(".images_history_set_index");
|
||||
var curr_idx = set_btn.getAttribute("img_index", index);
|
||||
if (curr_idx != index) {
|
||||
set_btn.setAttribute("img_index", index);
|
||||
images_history_disabled_del();
|
||||
}
|
||||
set_btn.click();
|
||||
|
||||
}
|
||||
|
||||
function images_history_get_current_img(tabname, image_path, files){
|
||||
return [
|
||||
gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"),
|
||||
image_path,
|
||||
files
|
||||
];
|
||||
}
|
||||
|
||||
function images_history_delete(del_num, tabname, img_path, img_file_name, page_index, filenames, image_index){
|
||||
image_index = parseInt(image_index);
|
||||
var tab = gradioApp().getElementById(tabname + '_images_history');
|
||||
var set_btn = tab.querySelector(".images_history_set_index");
|
||||
var buttons = [];
|
||||
tab.querySelectorAll(".gallery-item").forEach(function(e){
|
||||
if (e.style.display != 'none'){
|
||||
buttons.push(e);
|
||||
}
|
||||
});
|
||||
var img_num = buttons.length / 2;
|
||||
if (img_num <= del_num){
|
||||
setTimeout(function(tabname){
|
||||
gradioApp().getElementById(tabname + '_images_history_renew_page').click();
|
||||
}, 30, tabname);
|
||||
} else {
|
||||
var next_img
|
||||
for (var i = 0; i < del_num; i++){
|
||||
if (image_index + i < image_index + img_num){
|
||||
buttons[image_index + i].style.display = 'none';
|
||||
buttons[image_index + img_num + 1].style.display = 'none';
|
||||
next_img = image_index + i + 1
|
||||
}
|
||||
}
|
||||
var bnt;
|
||||
if (next_img >= img_num){
|
||||
btn = buttons[image_index - del_num];
|
||||
} else {
|
||||
btn = buttons[next_img];
|
||||
}
|
||||
setTimeout(function(btn){btn.click()}, 30, btn);
|
||||
}
|
||||
images_history_disabled_del();
|
||||
return [del_num, tabname, img_path, img_file_name, page_index, filenames, image_index];
|
||||
}
|
||||
|
||||
function images_history_turnpage(img_path, page_index, image_index, tabname){
|
||||
var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item");
|
||||
buttons.forEach(function(elem) {
|
||||
elem.style.display = 'block';
|
||||
})
|
||||
return [img_path, page_index, image_index, tabname];
|
||||
}
|
||||
|
||||
function images_history_enable_del_buttons(){
|
||||
gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){
|
||||
btn.removeAttribute('disabled');
|
||||
})
|
||||
}
|
||||
|
||||
function images_history_init(){
|
||||
var load_txt2img_button = gradioApp().getElementById('txt2img_images_history_renew_page')
|
||||
if (load_txt2img_button){
|
||||
for (var i in images_history_tab_list ){
|
||||
tab = images_history_tab_list[i];
|
||||
gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor");
|
||||
gradioApp().getElementById(tab + '_images_history_set_index').classList.add("images_history_set_index");
|
||||
gradioApp().getElementById(tab + '_images_history_del_button').classList.add("images_history_del_button");
|
||||
gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery");
|
||||
|
||||
}
|
||||
var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div");
|
||||
tabs_box.setAttribute("id", "images_history_tab");
|
||||
var tab_btns = tabs_box.querySelectorAll("button");
|
||||
for (var i in images_history_tab_list){
|
||||
var tabname = images_history_tab_list[i]
|
||||
tab_btns[i].setAttribute("tabname", tabname);
|
||||
|
||||
// this refreshes history upon tab switch
|
||||
// until the history is known to work well, which is not the case now, we do not do this at startup
|
||||
//tab_btns[i].addEventListener('click', images_history_click_tab);
|
||||
}
|
||||
tabs_box.classList.add(images_history_tab_list[0]);
|
||||
|
||||
// same as above, at page load
|
||||
//load_txt2img_button.click();
|
||||
} else {
|
||||
setTimeout(images_history_init, 500);
|
||||
}
|
||||
}
|
||||
|
||||
var images_history_tab_list = ["txt2img", "img2img", "extras"];
|
||||
setTimeout(images_history_init, 500);
|
||||
document.addEventListener("DOMContentLoaded", function() {
|
||||
var mutationObserver = new MutationObserver(function(m){
|
||||
for (var i in images_history_tab_list ){
|
||||
let tabname = images_history_tab_list[i]
|
||||
var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item');
|
||||
buttons.forEach(function(bnt){
|
||||
bnt.addEventListener('click', images_history_click_image, true);
|
||||
});
|
||||
|
||||
// same as load_txt2img_button.click() above
|
||||
/*
|
||||
var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
|
||||
if (cls_btn){
|
||||
cls_btn.addEventListener('click', function(){
|
||||
gradioApp().getElementById(tabname + '_images_history_renew_page').click();
|
||||
}, false);
|
||||
}*/
|
||||
|
||||
}
|
||||
});
|
||||
mutationObserver.observe( gradioApp(), { childList:true, subtree:true });
|
||||
|
||||
});
|
||||
|
||||
|
@ -1,72 +1,97 @@
|
||||
// A full size 'lightbox' preview modal shown when left clicking on gallery previews
|
||||
|
||||
function closeModal() {
|
||||
gradioApp().getElementById("lightboxModal").style.display = "none";
|
||||
gradioApp().getElementById("lightboxModal").style.display = "none";
|
||||
}
|
||||
|
||||
function showModal(event) {
|
||||
const source = event.target || event.srcElement;
|
||||
const modalImage = gradioApp().getElementById("modalImage")
|
||||
const lb = gradioApp().getElementById("lightboxModal")
|
||||
modalImage.src = source.src
|
||||
if (modalImage.style.display === 'none') {
|
||||
lb.style.setProperty('background-image', 'url(' + source.src + ')');
|
||||
}
|
||||
lb.style.display = "block";
|
||||
lb.focus()
|
||||
event.stopPropagation()
|
||||
const source = event.target || event.srcElement;
|
||||
const modalImage = gradioApp().getElementById("modalImage")
|
||||
const lb = gradioApp().getElementById("lightboxModal")
|
||||
modalImage.src = source.src
|
||||
if (modalImage.style.display === 'none') {
|
||||
lb.style.setProperty('background-image', 'url(' + source.src + ')');
|
||||
}
|
||||
lb.style.display = "block";
|
||||
lb.focus()
|
||||
event.stopPropagation()
|
||||
}
|
||||
|
||||
function negmod(n, m) {
|
||||
return ((n % m) + m) % m;
|
||||
return ((n % m) + m) % m;
|
||||
}
|
||||
|
||||
function modalImageSwitch(offset){
|
||||
var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
|
||||
var galleryButtons = []
|
||||
allgalleryButtons.forEach(function(elem){
|
||||
if(elem.parentElement.offsetParent){
|
||||
galleryButtons.push(elem);
|
||||
function updateOnBackgroundChange() {
|
||||
const modalImage = gradioApp().getElementById("modalImage")
|
||||
if (modalImage && modalImage.offsetParent) {
|
||||
let allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
||||
let currentButton = null
|
||||
allcurrentButtons.forEach(function(elem) {
|
||||
if (elem.parentElement.offsetParent) {
|
||||
currentButton = elem;
|
||||
}
|
||||
})
|
||||
|
||||
if (modalImage.src != currentButton.children[0].src) {
|
||||
modalImage.src = currentButton.children[0].src;
|
||||
if (modalImage.style.display === 'none') {
|
||||
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
if(galleryButtons.length>1){
|
||||
var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
||||
var currentButton = null
|
||||
allcurrentButtons.forEach(function(elem){
|
||||
if(elem.parentElement.offsetParent){
|
||||
currentButton = elem;
|
||||
function modalImageSwitch(offset) {
|
||||
var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
|
||||
var galleryButtons = []
|
||||
allgalleryButtons.forEach(function(elem) {
|
||||
if (elem.parentElement.offsetParent) {
|
||||
galleryButtons.push(elem);
|
||||
}
|
||||
})
|
||||
})
|
||||
|
||||
var result = -1
|
||||
galleryButtons.forEach(function(v, i){ if(v==currentButton) { result = i } })
|
||||
if (galleryButtons.length > 1) {
|
||||
var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
||||
var currentButton = null
|
||||
allcurrentButtons.forEach(function(elem) {
|
||||
if (elem.parentElement.offsetParent) {
|
||||
currentButton = elem;
|
||||
}
|
||||
})
|
||||
|
||||
if(result != -1){
|
||||
nextButton = galleryButtons[negmod((result+offset),galleryButtons.length)]
|
||||
nextButton.click()
|
||||
const modalImage = gradioApp().getElementById("modalImage");
|
||||
const modal = gradioApp().getElementById("lightboxModal");
|
||||
modalImage.src = nextButton.children[0].src;
|
||||
if (modalImage.style.display === 'none') {
|
||||
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
||||
var result = -1
|
||||
galleryButtons.forEach(function(v, i) {
|
||||
if (v == currentButton) {
|
||||
result = i
|
||||
}
|
||||
})
|
||||
|
||||
if (result != -1) {
|
||||
nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)]
|
||||
nextButton.click()
|
||||
const modalImage = gradioApp().getElementById("modalImage");
|
||||
const modal = gradioApp().getElementById("lightboxModal");
|
||||
modalImage.src = nextButton.children[0].src;
|
||||
if (modalImage.style.display === 'none') {
|
||||
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
||||
}
|
||||
setTimeout(function() {
|
||||
modal.focus()
|
||||
}, 10)
|
||||
}
|
||||
setTimeout( function(){modal.focus()},10)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function modalNextImage(event){
|
||||
modalImageSwitch(1)
|
||||
event.stopPropagation()
|
||||
function modalNextImage(event) {
|
||||
modalImageSwitch(1)
|
||||
event.stopPropagation()
|
||||
}
|
||||
|
||||
function modalPrevImage(event){
|
||||
modalImageSwitch(-1)
|
||||
event.stopPropagation()
|
||||
function modalPrevImage(event) {
|
||||
modalImageSwitch(-1)
|
||||
event.stopPropagation()
|
||||
}
|
||||
|
||||
function modalKeyHandler(event){
|
||||
function modalKeyHandler(event) {
|
||||
switch (event.key) {
|
||||
case "ArrowLeft":
|
||||
modalPrevImage(event)
|
||||
@ -80,21 +105,22 @@ function modalKeyHandler(event){
|
||||
}
|
||||
}
|
||||
|
||||
function showGalleryImage(){
|
||||
function showGalleryImage() {
|
||||
setTimeout(function() {
|
||||
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
|
||||
|
||||
if(fullImg_preview != null){
|
||||
|
||||
if (fullImg_preview != null) {
|
||||
fullImg_preview.forEach(function function_name(e) {
|
||||
if (e.dataset.modded)
|
||||
return;
|
||||
e.dataset.modded = true;
|
||||
if(e && e.parentElement.tagName == 'DIV'){
|
||||
|
||||
e.style.cursor='pointer'
|
||||
|
||||
e.addEventListener('click', function (evt) {
|
||||
if(!opts.js_modal_lightbox) return;
|
||||
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initialy_zoomed)
|
||||
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
|
||||
showModal(evt)
|
||||
},true);
|
||||
}, true);
|
||||
}
|
||||
});
|
||||
}
|
||||
@ -102,21 +128,21 @@ function showGalleryImage(){
|
||||
}, 100);
|
||||
}
|
||||
|
||||
function modalZoomSet(modalImage, enable){
|
||||
if( enable ){
|
||||
function modalZoomSet(modalImage, enable) {
|
||||
if (enable) {
|
||||
modalImage.classList.add('modalImageFullscreen');
|
||||
} else{
|
||||
} else {
|
||||
modalImage.classList.remove('modalImageFullscreen');
|
||||
}
|
||||
}
|
||||
|
||||
function modalZoomToggle(event){
|
||||
function modalZoomToggle(event) {
|
||||
modalImage = gradioApp().getElementById("modalImage");
|
||||
modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen'))
|
||||
event.stopPropagation()
|
||||
}
|
||||
|
||||
function modalTileImageToggle(event){
|
||||
function modalTileImageToggle(event) {
|
||||
const modalImage = gradioApp().getElementById("modalImage");
|
||||
const modal = gradioApp().getElementById("lightboxModal");
|
||||
const isTiling = modalImage.style.display === 'none';
|
||||
@ -131,17 +157,18 @@ function modalTileImageToggle(event){
|
||||
event.stopPropagation()
|
||||
}
|
||||
|
||||
function galleryImageHandler(e){
|
||||
if(e && e.parentElement.tagName == 'BUTTON'){
|
||||
function galleryImageHandler(e) {
|
||||
if (e && e.parentElement.tagName == 'BUTTON') {
|
||||
e.onclick = showGalleryImage;
|
||||
}
|
||||
}
|
||||
|
||||
onUiUpdate(function(){
|
||||
onUiUpdate(function() {
|
||||
fullImg_preview = gradioApp().querySelectorAll('img.w-full')
|
||||
if(fullImg_preview != null){
|
||||
fullImg_preview.forEach(galleryImageHandler);
|
||||
if (fullImg_preview != null) {
|
||||
fullImg_preview.forEach(galleryImageHandler);
|
||||
}
|
||||
updateOnBackgroundChange();
|
||||
})
|
||||
|
||||
document.addEventListener("DOMContentLoaded", function() {
|
||||
@ -149,13 +176,13 @@ document.addEventListener("DOMContentLoaded", function() {
|
||||
const modal = document.createElement('div')
|
||||
modal.onclick = closeModal;
|
||||
modal.id = "lightboxModal";
|
||||
modal.tabIndex=0
|
||||
modal.tabIndex = 0
|
||||
modal.addEventListener('keydown', modalKeyHandler, true)
|
||||
|
||||
const modalControls = document.createElement('div')
|
||||
modalControls.className = 'modalControls gradio-container';
|
||||
modal.append(modalControls);
|
||||
|
||||
|
||||
const modalZoom = document.createElement('span')
|
||||
modalZoom.className = 'modalZoom cursor';
|
||||
modalZoom.innerHTML = '⤡'
|
||||
@ -180,30 +207,30 @@ document.addEventListener("DOMContentLoaded", function() {
|
||||
const modalImage = document.createElement('img')
|
||||
modalImage.id = 'modalImage';
|
||||
modalImage.onclick = closeModal;
|
||||
modalImage.tabIndex=0
|
||||
modalImage.tabIndex = 0
|
||||
modalImage.addEventListener('keydown', modalKeyHandler, true)
|
||||
modal.appendChild(modalImage)
|
||||
|
||||
const modalPrev = document.createElement('a')
|
||||
modalPrev.className = 'modalPrev';
|
||||
modalPrev.innerHTML = '❮'
|
||||
modalPrev.tabIndex=0
|
||||
modalPrev.addEventListener('click',modalPrevImage,true);
|
||||
modalPrev.tabIndex = 0
|
||||
modalPrev.addEventListener('click', modalPrevImage, true);
|
||||
modalPrev.addEventListener('keydown', modalKeyHandler, true)
|
||||
modal.appendChild(modalPrev)
|
||||
|
||||
const modalNext = document.createElement('a')
|
||||
modalNext.className = 'modalNext';
|
||||
modalNext.innerHTML = '❯'
|
||||
modalNext.tabIndex=0
|
||||
modalNext.addEventListener('click',modalNextImage,true);
|
||||
modalNext.tabIndex = 0
|
||||
modalNext.addEventListener('click', modalNextImage, true);
|
||||
modalNext.addEventListener('keydown', modalKeyHandler, true)
|
||||
|
||||
modal.appendChild(modalNext)
|
||||
|
||||
|
||||
gradioApp().getRootNode().appendChild(modal)
|
||||
|
||||
|
||||
document.body.appendChild(modalFragment);
|
||||
|
||||
|
||||
});
|
||||
|
@ -36,7 +36,7 @@ onUiUpdate(function(){
|
||||
const notification = new Notification(
|
||||
'Stable Diffusion',
|
||||
{
|
||||
body: `Generated ${imgs.size > 1 ? imgs.size - 1 : 1} image${imgs.size > 1 ? 's' : ''}`,
|
||||
body: `Generated ${imgs.size > 1 ? imgs.size - opts.return_grid : 1} image${imgs.size > 1 ? 's' : ''}`,
|
||||
icon: headImg,
|
||||
image: headImg,
|
||||
}
|
||||
|
@ -1,9 +1,27 @@
|
||||
// code related to showing and updating progressbar shown as the image is being made
|
||||
global_progressbars = {}
|
||||
galleries = {}
|
||||
galleryObservers = {}
|
||||
|
||||
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_interrupt, id_preview, id_gallery){
|
||||
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){
|
||||
var progressbar = gradioApp().getElementById(id_progressbar)
|
||||
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
|
||||
var interrupt = gradioApp().getElementById(id_interrupt)
|
||||
|
||||
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
|
||||
if(progressbar.innerText){
|
||||
let newtitle = 'Stable Diffusion - ' + progressbar.innerText
|
||||
if(document.title != newtitle){
|
||||
document.title = newtitle;
|
||||
}
|
||||
}else{
|
||||
let newtitle = 'Stable Diffusion'
|
||||
if(document.title != newtitle){
|
||||
document.title = newtitle;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
|
||||
global_progressbars[id_progressbar] = progressbar
|
||||
|
||||
@ -15,31 +33,72 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_inte
|
||||
preview.style.width = gallery.clientWidth + "px"
|
||||
preview.style.height = gallery.clientHeight + "px"
|
||||
|
||||
//only watch gallery if there is a generation process going on
|
||||
check_gallery(id_gallery);
|
||||
|
||||
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
|
||||
if(!progressDiv){
|
||||
if (skip) {
|
||||
skip.style.display = "none"
|
||||
}
|
||||
interrupt.style.display = "none"
|
||||
|
||||
//disconnect observer once generation finished, so user can close selected image if they want
|
||||
if (galleryObservers[id_gallery]) {
|
||||
galleryObservers[id_gallery].disconnect();
|
||||
galleries[id_gallery] = null;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
window.setTimeout(function(){ requestMoreProgress(id_part, id_progressbar_span, id_interrupt) }, 500)
|
||||
window.setTimeout(function() { requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt) }, 500)
|
||||
});
|
||||
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
||||
}
|
||||
}
|
||||
|
||||
function check_gallery(id_gallery){
|
||||
let gallery = gradioApp().getElementById(id_gallery)
|
||||
// if gallery has no change, no need to setting up observer again.
|
||||
if (gallery && galleries[id_gallery] !== gallery){
|
||||
galleries[id_gallery] = gallery;
|
||||
if(galleryObservers[id_gallery]){
|
||||
galleryObservers[id_gallery].disconnect();
|
||||
}
|
||||
let prevSelectedIndex = selected_gallery_index();
|
||||
galleryObservers[id_gallery] = new MutationObserver(function (){
|
||||
let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item')
|
||||
let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
|
||||
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
|
||||
//automatically re-open previously selected index (if exists)
|
||||
galleryButtons[prevSelectedIndex].click();
|
||||
showGalleryImage();
|
||||
}
|
||||
})
|
||||
galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false })
|
||||
}
|
||||
}
|
||||
|
||||
onUiUpdate(function(){
|
||||
check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery')
|
||||
check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery')
|
||||
check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_skip', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery')
|
||||
check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_skip', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery')
|
||||
check_progressbar('ti', 'ti_progressbar', 'ti_progress_span', '', 'ti_interrupt', 'ti_preview', 'ti_gallery')
|
||||
})
|
||||
|
||||
function requestMoreProgress(id_part, id_progressbar_span, id_interrupt){
|
||||
function requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt){
|
||||
btn = gradioApp().getElementById(id_part+"_check_progress");
|
||||
if(btn==null) return;
|
||||
|
||||
btn.click();
|
||||
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
|
||||
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
|
||||
var interrupt = gradioApp().getElementById(id_interrupt)
|
||||
if(progressDiv && interrupt){
|
||||
if (skip) {
|
||||
skip.style.display = "block"
|
||||
}
|
||||
interrupt.style.display = "block"
|
||||
}
|
||||
}
|
||||
|
8
javascript/textualInversion.js
Normal file
8
javascript/textualInversion.js
Normal file
@ -0,0 +1,8 @@
|
||||
|
||||
|
||||
function start_training_textual_inversion(){
|
||||
requestProgress('ti')
|
||||
gradioApp().querySelector('#ti_error').innerHTML=''
|
||||
|
||||
return args_to_array(arguments)
|
||||
}
|
@ -33,27 +33,27 @@ function args_to_array(args){
|
||||
}
|
||||
|
||||
function switch_to_txt2img(){
|
||||
gradioApp().querySelectorAll('button')[0].click();
|
||||
gradioApp().querySelector('#tabs').querySelectorAll('button')[0].click();
|
||||
|
||||
return args_to_array(arguments);
|
||||
}
|
||||
|
||||
function switch_to_img2img_img2img(){
|
||||
gradioApp().querySelectorAll('button')[1].click();
|
||||
gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
|
||||
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[0].click();
|
||||
|
||||
return args_to_array(arguments);
|
||||
}
|
||||
|
||||
function switch_to_img2img_inpaint(){
|
||||
gradioApp().querySelectorAll('button')[1].click();
|
||||
gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
|
||||
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[1].click();
|
||||
|
||||
return args_to_array(arguments);
|
||||
}
|
||||
|
||||
function switch_to_extras(){
|
||||
gradioApp().querySelectorAll('button')[2].click();
|
||||
gradioApp().querySelector('#tabs').querySelectorAll('button')[2].click();
|
||||
|
||||
return args_to_array(arguments);
|
||||
}
|
||||
@ -101,7 +101,8 @@ function create_tab_index_args(tabId, args){
|
||||
}
|
||||
|
||||
function get_extras_tab_index(){
|
||||
return create_tab_index_args('mode_extras', arguments)
|
||||
const [,,...args] = [...arguments]
|
||||
return [get_tab_index('mode_extras'), get_tab_index('extras_resize_mode'), ...args]
|
||||
}
|
||||
|
||||
function create_submit_args(args){
|
||||
@ -186,12 +187,10 @@ onUiUpdate(function(){
|
||||
if (!txt2img_textarea) {
|
||||
txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea");
|
||||
txt2img_textarea?.addEventListener("input", () => update_token_counter("txt2img_token_button"));
|
||||
txt2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "txt2img_generate"));
|
||||
}
|
||||
if (!img2img_textarea) {
|
||||
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
|
||||
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
|
||||
img2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "img2img_generate"));
|
||||
}
|
||||
})
|
||||
|
||||
@ -199,12 +198,18 @@ let txt2img_textarea, img2img_textarea = undefined;
|
||||
let wait_time = 800
|
||||
let token_timeout;
|
||||
|
||||
function submit_prompt(event, generate_button_id) {
|
||||
if (event.altKey && event.keyCode === 13) {
|
||||
event.preventDefault();
|
||||
gradioApp().getElementById(generate_button_id).click();
|
||||
return;
|
||||
}
|
||||
function update_txt2img_tokens(...args) {
|
||||
update_token_counter("txt2img_token_button")
|
||||
if (args.length == 2)
|
||||
return args[0]
|
||||
return args;
|
||||
}
|
||||
|
||||
function update_img2img_tokens(...args) {
|
||||
update_token_counter("img2img_token_button")
|
||||
if (args.length == 2)
|
||||
return args[0]
|
||||
return args;
|
||||
}
|
||||
|
||||
function update_token_counter(button_id) {
|
||||
@ -212,3 +217,8 @@ function update_token_counter(button_id) {
|
||||
clearTimeout(token_timeout);
|
||||
token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
|
||||
}
|
||||
|
||||
function restart_reload(){
|
||||
document.body.innerHTML='<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>';
|
||||
setTimeout(function(){location.reload()},2000)
|
||||
}
|
||||
|
150
launch.py
150
launch.py
@ -4,38 +4,18 @@ import os
|
||||
import sys
|
||||
import importlib.util
|
||||
import shlex
|
||||
import platform
|
||||
|
||||
dir_repos = "repositories"
|
||||
dir_tmp = "tmp"
|
||||
|
||||
python = sys.executable
|
||||
git = os.environ.get('GIT', "git")
|
||||
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
||||
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
||||
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
||||
|
||||
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
||||
|
||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
||||
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "a7ec1974d4ccb394c2dca275f42cd97490618924")
|
||||
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
||||
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
||||
|
||||
args = shlex.split(commandline_args)
|
||||
index_url = os.environ.get('INDEX_URL', "")
|
||||
|
||||
|
||||
def extract_arg(args, name):
|
||||
return [x for x in args if x != name], name in args
|
||||
|
||||
|
||||
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
||||
|
||||
|
||||
def repo_dir(name):
|
||||
return os.path.join(dir_repos, name)
|
||||
|
||||
|
||||
def run(command, desc=None, errdesc=None):
|
||||
if desc is not None:
|
||||
print(desc)
|
||||
@ -55,23 +35,11 @@ stderr: {result.stderr.decode(encoding="utf8", errors="ignore") if len(result.st
|
||||
return result.stdout.decode(encoding="utf8", errors="ignore")
|
||||
|
||||
|
||||
def run_python(code, desc=None, errdesc=None):
|
||||
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
||||
|
||||
|
||||
def run_pip(args, desc=None):
|
||||
return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
||||
|
||||
|
||||
def check_run(command):
|
||||
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
||||
return result.returncode == 0
|
||||
|
||||
|
||||
def check_run_python(code):
|
||||
return check_run(f'"{python}" -c "{code}"')
|
||||
|
||||
|
||||
def is_installed(package):
|
||||
try:
|
||||
spec = importlib.util.find_spec(package)
|
||||
@ -81,10 +49,36 @@ def is_installed(package):
|
||||
return spec is not None
|
||||
|
||||
|
||||
def repo_dir(name):
|
||||
return os.path.join(dir_repos, name)
|
||||
|
||||
|
||||
def run_python(code, desc=None, errdesc=None):
|
||||
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
||||
|
||||
|
||||
def run_pip(args, desc=None):
|
||||
index_url_line = f' --index-url {index_url}' if index_url != '' else ''
|
||||
return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
||||
|
||||
|
||||
def check_run_python(code):
|
||||
return check_run(f'"{python}" -c "{code}"')
|
||||
|
||||
|
||||
def git_clone(url, dir, name, commithash=None):
|
||||
# TODO clone into temporary dir and move if successful
|
||||
|
||||
if os.path.exists(dir):
|
||||
if commithash is None:
|
||||
return
|
||||
|
||||
current_hash = run(f'"{git}" -C {dir} rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip()
|
||||
if current_hash == commithash:
|
||||
return
|
||||
|
||||
run(f'"{git}" -C {dir} fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
|
||||
run(f'"{git}" -C {dir} checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}")
|
||||
return
|
||||
|
||||
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
|
||||
@ -93,47 +87,85 @@ def git_clone(url, dir, name, commithash=None):
|
||||
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
|
||||
|
||||
|
||||
try:
|
||||
commit = run(f"{git} rev-parse HEAD").strip()
|
||||
except Exception:
|
||||
commit = "<none>"
|
||||
def prepare_enviroment():
|
||||
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
||||
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
||||
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
||||
|
||||
print(f"Python {sys.version}")
|
||||
print(f"Commit hash: {commit}")
|
||||
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
||||
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
|
||||
|
||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
||||
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "f4e99857772fc3a126ba886aadf795a332774878")
|
||||
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
||||
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
||||
|
||||
if not is_installed("torch") or not is_installed("torchvision"):
|
||||
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
|
||||
args = shlex.split(commandline_args)
|
||||
|
||||
if not skip_torch_cuda_test:
|
||||
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
|
||||
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
||||
xformers = '--xformers' in args
|
||||
deepdanbooru = '--deepdanbooru' in args
|
||||
ngrok = '--ngrok' in args
|
||||
|
||||
if not is_installed("gfpgan"):
|
||||
run_pip(f"install {gfpgan_package}", "gfpgan")
|
||||
try:
|
||||
commit = run(f"{git} rev-parse HEAD").strip()
|
||||
except Exception:
|
||||
commit = "<none>"
|
||||
|
||||
os.makedirs(dir_repos, exist_ok=True)
|
||||
print(f"Python {sys.version}")
|
||||
print(f"Commit hash: {commit}")
|
||||
|
||||
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
||||
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
||||
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
||||
if not is_installed("torch") or not is_installed("torchvision"):
|
||||
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
|
||||
|
||||
if not is_installed("lpips"):
|
||||
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
|
||||
if not skip_torch_cuda_test:
|
||||
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
|
||||
|
||||
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
||||
if not is_installed("gfpgan"):
|
||||
run_pip(f"install {gfpgan_package}", "gfpgan")
|
||||
|
||||
sys.argv += args
|
||||
if not is_installed("clip"):
|
||||
run_pip(f"install {clip_package}", "clip")
|
||||
|
||||
if not is_installed("xformers") and xformers and platform.python_version().startswith("3.10"):
|
||||
if platform.system() == "Windows":
|
||||
run_pip("install https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/c/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers")
|
||||
elif platform.system() == "Linux":
|
||||
run_pip("install xformers", "xformers")
|
||||
|
||||
if not is_installed("deepdanbooru") and deepdanbooru:
|
||||
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
|
||||
|
||||
if not is_installed("pyngrok") and ngrok:
|
||||
run_pip("install pyngrok", "ngrok")
|
||||
|
||||
os.makedirs(dir_repos, exist_ok=True)
|
||||
|
||||
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
||||
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
||||
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
||||
|
||||
if not is_installed("lpips"):
|
||||
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
|
||||
|
||||
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
||||
|
||||
sys.argv += args
|
||||
|
||||
if "--exit" in args:
|
||||
print("Exiting because of --exit argument")
|
||||
exit(0)
|
||||
|
||||
if "--exit" in args:
|
||||
print("Exiting because of --exit argument")
|
||||
exit(0)
|
||||
|
||||
def start_webui():
|
||||
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}")
|
||||
import webui
|
||||
webui.webui()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
prepare_enviroment()
|
||||
start_webui()
|
||||
|
@ -8,15 +8,13 @@ import torch
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
|
||||
import modules.upscaler
|
||||
from modules import shared, modelloader
|
||||
from modules import devices, modelloader
|
||||
from modules.bsrgan_model_arch import RRDBNet
|
||||
from modules.paths import models_path
|
||||
|
||||
|
||||
class UpscalerBSRGAN(modules.upscaler.Upscaler):
|
||||
def __init__(self, dirname):
|
||||
self.name = "BSRGAN"
|
||||
self.model_path = os.path.join(models_path, self.name)
|
||||
self.model_name = "BSRGAN 4x"
|
||||
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth"
|
||||
self.user_path = dirname
|
||||
@ -44,13 +42,13 @@ class UpscalerBSRGAN(modules.upscaler.Upscaler):
|
||||
model = self.load_model(selected_file)
|
||||
if model is None:
|
||||
return img
|
||||
model.to(shared.device)
|
||||
model.to(devices.device_bsrgan)
|
||||
torch.cuda.empty_cache()
|
||||
img = np.array(img)
|
||||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(shared.device)
|
||||
img = img.unsqueeze(0).to(devices.device_bsrgan)
|
||||
with torch.no_grad():
|
||||
output = model(img)
|
||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
|
@ -69,10 +69,14 @@ def setup_model(dirname):
|
||||
|
||||
self.net = net
|
||||
self.face_helper = face_helper
|
||||
self.net.to(devices.device_codeformer)
|
||||
|
||||
return net, face_helper
|
||||
|
||||
def send_model_to(self, device):
|
||||
self.net.to(device)
|
||||
self.face_helper.face_det.to(device)
|
||||
self.face_helper.face_parse.to(device)
|
||||
|
||||
def restore(self, np_image, w=None):
|
||||
np_image = np_image[:, :, ::-1]
|
||||
|
||||
@ -82,6 +86,8 @@ def setup_model(dirname):
|
||||
if self.net is None or self.face_helper is None:
|
||||
return np_image
|
||||
|
||||
self.send_model_to(devices.device_codeformer)
|
||||
|
||||
self.face_helper.clean_all()
|
||||
self.face_helper.read_image(np_image)
|
||||
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
||||
@ -113,8 +119,10 @@ def setup_model(dirname):
|
||||
if original_resolution != restored_img.shape[0:2]:
|
||||
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
self.face_helper.clean_all()
|
||||
|
||||
if shared.opts.face_restoration_unload:
|
||||
self.net.to(devices.cpu)
|
||||
self.send_model_to(devices.cpu)
|
||||
|
||||
return restored_img
|
||||
|
||||
|
173
modules/deepbooru.py
Normal file
173
modules/deepbooru.py
Normal file
@ -0,0 +1,173 @@
|
||||
import os.path
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
import multiprocessing
|
||||
import time
|
||||
import re
|
||||
|
||||
re_special = re.compile(r'([\\()])')
|
||||
|
||||
def get_deepbooru_tags(pil_image):
|
||||
"""
|
||||
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
|
||||
try:
|
||||
create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts())
|
||||
return get_tags_from_process(pil_image)
|
||||
finally:
|
||||
release_process()
|
||||
|
||||
|
||||
OPT_INCLUDE_RANKS = "include_ranks"
|
||||
def create_deepbooru_opts():
|
||||
from modules import shared
|
||||
|
||||
return {
|
||||
"use_spaces": shared.opts.deepbooru_use_spaces,
|
||||
"use_escape": shared.opts.deepbooru_escape,
|
||||
"alpha_sort": shared.opts.deepbooru_sort_alpha,
|
||||
OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
|
||||
}
|
||||
|
||||
|
||||
def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts):
|
||||
model, tags = get_deepbooru_tags_model()
|
||||
while True: # while process is running, keep monitoring queue for new image
|
||||
pil_image = queue.get()
|
||||
if pil_image == "QUIT":
|
||||
break
|
||||
else:
|
||||
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts)
|
||||
|
||||
|
||||
def create_deepbooru_process(threshold, deepbooru_opts):
|
||||
"""
|
||||
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
|
||||
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
|
||||
dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
|
||||
to the dictionary and the method adding the image to the queue should wait for this value to be updated with
|
||||
the tags.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
shared.deepbooru_process_manager = multiprocessing.Manager()
|
||||
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
|
||||
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
|
||||
shared.deepbooru_process.start()
|
||||
|
||||
|
||||
def get_tags_from_process(image):
|
||||
from modules import shared
|
||||
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process_queue.put(image)
|
||||
while shared.deepbooru_process_return["value"] == -1:
|
||||
time.sleep(0.2)
|
||||
caption = shared.deepbooru_process_return["value"]
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
|
||||
return caption
|
||||
|
||||
|
||||
def release_process():
|
||||
"""
|
||||
Stops the deepbooru process to return used memory
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
shared.deepbooru_process_queue.put("QUIT")
|
||||
shared.deepbooru_process.join()
|
||||
shared.deepbooru_process_queue = None
|
||||
shared.deepbooru_process = None
|
||||
shared.deepbooru_process_return = None
|
||||
shared.deepbooru_process_manager = None
|
||||
|
||||
def get_deepbooru_tags_model():
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
this_folder = os.path.dirname(__file__)
|
||||
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
|
||||
if not os.path.exists(os.path.join(model_path, 'project.json')):
|
||||
# there is no point importing these every time
|
||||
import zipfile
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
load_file_from_url(
|
||||
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
|
||||
model_path)
|
||||
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
|
||||
zip_ref.extractall(model_path)
|
||||
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
|
||||
|
||||
tags = dd.project.load_tags_from_project(model_path)
|
||||
model = dd.project.load_model_from_project(
|
||||
model_path, compile_model=False
|
||||
)
|
||||
return model, tags
|
||||
|
||||
|
||||
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts):
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
alpha_sort = deepbooru_opts['alpha_sort']
|
||||
use_spaces = deepbooru_opts['use_spaces']
|
||||
use_escape = deepbooru_opts['use_escape']
|
||||
include_ranks = deepbooru_opts['include_ranks']
|
||||
|
||||
width = model.input_shape[2]
|
||||
height = model.input_shape[1]
|
||||
image = np.array(pil_image)
|
||||
image = tf.image.resize(
|
||||
image,
|
||||
size=(height, width),
|
||||
method=tf.image.ResizeMethod.AREA,
|
||||
preserve_aspect_ratio=True,
|
||||
)
|
||||
image = image.numpy() # EagerTensor to np.array
|
||||
image = dd.image.transform_and_pad_image(image, width, height)
|
||||
image = image / 255.0
|
||||
image_shape = image.shape
|
||||
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
|
||||
|
||||
y = model.predict(image)[0]
|
||||
|
||||
result_dict = {}
|
||||
|
||||
for i, tag in enumerate(tags):
|
||||
result_dict[tag] = y[i]
|
||||
|
||||
unsorted_tags_in_theshold = []
|
||||
result_tags_print = []
|
||||
for tag in tags:
|
||||
if result_dict[tag] >= threshold:
|
||||
if tag.startswith("rating:"):
|
||||
continue
|
||||
unsorted_tags_in_theshold.append((result_dict[tag], tag))
|
||||
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
||||
|
||||
# sort tags
|
||||
result_tags_out = []
|
||||
sort_ndx = 0
|
||||
if alpha_sort:
|
||||
sort_ndx = 1
|
||||
|
||||
# sort by reverse by likelihood and normal for alpha, and format tag text as requested
|
||||
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
|
||||
for weight, tag in unsorted_tags_in_theshold:
|
||||
# note: tag_outformat will still have a colon if include_ranks is True
|
||||
tag_outformat = tag.replace(':', ' ')
|
||||
if use_spaces:
|
||||
tag_outformat = tag_outformat.replace('_', ' ')
|
||||
if use_escape:
|
||||
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
|
||||
if include_ranks:
|
||||
tag_outformat = f"({tag_outformat}:{weight:.3f})"
|
||||
|
||||
result_tags_out.append(tag_outformat)
|
||||
|
||||
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||||
|
||||
return ', '.join(result_tags_out)
|
@ -1,8 +1,10 @@
|
||||
import contextlib
|
||||
|
||||
import torch
|
||||
|
||||
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
|
||||
from modules import errors
|
||||
|
||||
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
|
||||
has_mps = getattr(torch, 'has_mps', False)
|
||||
|
||||
cpu = torch.device("cpu")
|
||||
@ -32,10 +34,9 @@ def enable_tf32():
|
||||
|
||||
errors.run(enable_tf32, "Enabling TF32")
|
||||
|
||||
|
||||
device = get_optimal_device()
|
||||
device_codeformer = cpu if has_mps else device
|
||||
|
||||
device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = get_optimal_device()
|
||||
dtype = torch.float16
|
||||
dtype_vae = torch.float16
|
||||
|
||||
def randn(seed, shape):
|
||||
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
||||
@ -58,3 +59,14 @@ def randn_without_seed(shape):
|
||||
|
||||
return torch.randn(shape, device=device)
|
||||
|
||||
|
||||
def autocast(disable=False):
|
||||
from modules import shared
|
||||
|
||||
if disable:
|
||||
return contextlib.nullcontext()
|
||||
|
||||
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
|
||||
return contextlib.nullcontext()
|
||||
|
||||
return torch.autocast("cuda")
|
||||
|
@ -5,10 +5,8 @@ import torch
|
||||
from PIL import Image
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
|
||||
import modules.esrgam_model_arch as arch
|
||||
from modules import shared, modelloader, images
|
||||
from modules.devices import has_mps
|
||||
from modules.paths import models_path
|
||||
import modules.esrgan_model_arch as arch
|
||||
from modules import shared, modelloader, images, devices
|
||||
from modules.upscaler import Upscaler, UpscalerData
|
||||
from modules.shared import opts
|
||||
|
||||
@ -73,11 +71,10 @@ def fix_model_layers(crt_model, pretrained_net):
|
||||
class UpscalerESRGAN(Upscaler):
|
||||
def __init__(self, dirname):
|
||||
self.name = "ESRGAN"
|
||||
self.model_url = "https://drive.google.com/u/0/uc?id=1TPrz5QKd8DHHt1k8SRtm6tMiPjz_Qene&export=download"
|
||||
self.model_name = "ESRGAN 4x"
|
||||
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
|
||||
self.model_name = "ESRGAN_4x"
|
||||
self.scalers = []
|
||||
self.user_path = dirname
|
||||
self.model_path = os.path.join(models_path, self.name)
|
||||
super().__init__()
|
||||
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
||||
scalers = []
|
||||
@ -97,7 +94,7 @@ class UpscalerESRGAN(Upscaler):
|
||||
model = self.load_model(selected_model)
|
||||
if model is None:
|
||||
return img
|
||||
model.to(shared.device)
|
||||
model.to(devices.device_esrgan)
|
||||
img = esrgan_upscale(model, img)
|
||||
return img
|
||||
|
||||
@ -112,7 +109,7 @@ class UpscalerESRGAN(Upscaler):
|
||||
print("Unable to load %s from %s" % (self.model_path, filename))
|
||||
return None
|
||||
|
||||
pretrained_net = torch.load(filename, map_location='cpu' if has_mps else None)
|
||||
pretrained_net = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
|
||||
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
||||
|
||||
pretrained_net = fix_model_layers(crt_model, pretrained_net)
|
||||
@ -127,7 +124,7 @@ def upscale_without_tiling(model, img):
|
||||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(shared.device)
|
||||
img = img.unsqueeze(0).to(devices.device_esrgan)
|
||||
with torch.no_grad():
|
||||
output = model(img)
|
||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
|
@ -1,3 +1,4 @@
|
||||
import math
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
@ -19,7 +20,7 @@ import gradio as gr
|
||||
cached_images = {}
|
||||
|
||||
|
||||
def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
||||
def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
||||
devices.torch_gc()
|
||||
|
||||
imageArr = []
|
||||
@ -29,7 +30,7 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
|
||||
if extras_mode == 1:
|
||||
#convert file to pillow image
|
||||
for img in image_folder:
|
||||
image = Image.fromarray(np.array(Image.open(img)))
|
||||
image = Image.open(img)
|
||||
imageArr.append(image)
|
||||
imageNameArr.append(os.path.splitext(img.orig_name)[0])
|
||||
else:
|
||||
@ -67,8 +68,13 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
|
||||
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
||||
image = res
|
||||
|
||||
if resize_mode == 1:
|
||||
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
||||
crop_info = " (crop)" if upscaling_crop else ""
|
||||
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
||||
|
||||
if upscaling_resize != 1.0:
|
||||
def upscale(image, scaler_index, resize):
|
||||
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
||||
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
|
||||
pixels = tuple(np.array(small).flatten().tolist())
|
||||
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
|
||||
@ -77,15 +83,19 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
|
||||
if c is None:
|
||||
upscaler = shared.sd_upscalers[scaler_index]
|
||||
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
||||
if mode == 1 and crop:
|
||||
cropped = Image.new("RGB", (resize_w, resize_h))
|
||||
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
|
||||
c = cropped
|
||||
cached_images[key] = c
|
||||
|
||||
return c
|
||||
|
||||
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
|
||||
res = upscale(image, extras_upscaler_1, upscaling_resize)
|
||||
res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||
|
||||
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
||||
res2 = upscale(image, extras_upscaler_2, upscaling_resize)
|
||||
res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
|
||||
res = Image.blend(res, res2, extras_upscaler_2_visibility)
|
||||
|
||||
@ -98,8 +108,14 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
|
||||
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
|
||||
forced_filename=image_name if opts.use_original_name_batch else None)
|
||||
|
||||
if opts.enable_pnginfo:
|
||||
image.info = existing_pnginfo
|
||||
image.info["extras"] = info
|
||||
|
||||
outputs.append(image)
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
return outputs, plaintext_to_html(info), ''
|
||||
|
||||
|
||||
@ -143,48 +159,52 @@ def run_pnginfo(image):
|
||||
return '', geninfo, info
|
||||
|
||||
|
||||
def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount, save_as_half, custom_name):
|
||||
# Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation)
|
||||
def weighted_sum(theta0, theta1, alpha):
|
||||
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
|
||||
def weighted_sum(theta0, theta1, theta2, alpha):
|
||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||
|
||||
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
|
||||
def sigmoid(theta0, theta1, alpha):
|
||||
alpha = alpha * alpha * (3 - (2 * alpha))
|
||||
return theta0 + ((theta1 - theta0) * alpha)
|
||||
|
||||
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
|
||||
def inv_sigmoid(theta0, theta1, alpha):
|
||||
import math
|
||||
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
|
||||
return theta0 + ((theta1 - theta0) * alpha)
|
||||
def add_difference(theta0, theta1, theta2, alpha):
|
||||
return theta0 + (theta1 - theta2) * alpha
|
||||
|
||||
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
||||
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
|
||||
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
|
||||
|
||||
print(f"Loading {primary_model_info.filename}...")
|
||||
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
|
||||
theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
|
||||
|
||||
print(f"Loading {secondary_model_info.filename}...")
|
||||
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
||||
|
||||
theta_0 = primary_model['state_dict']
|
||||
theta_1 = secondary_model['state_dict']
|
||||
theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
|
||||
|
||||
if teritary_model_info is not None:
|
||||
print(f"Loading {teritary_model_info.filename}...")
|
||||
teritary_model = torch.load(teritary_model_info.filename, map_location='cpu')
|
||||
theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
|
||||
else:
|
||||
theta_2 = None
|
||||
|
||||
theta_funcs = {
|
||||
"Weighted Sum": weighted_sum,
|
||||
"Sigmoid": sigmoid,
|
||||
"Inverse Sigmoid": inv_sigmoid,
|
||||
"Weighted sum": weighted_sum,
|
||||
"Add difference": add_difference,
|
||||
}
|
||||
theta_func = theta_funcs[interp_method]
|
||||
|
||||
print(f"Merging...")
|
||||
|
||||
for key in tqdm.tqdm(theta_0.keys()):
|
||||
if 'model' in key and key in theta_1:
|
||||
theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
|
||||
t2 = (theta_2 or {}).get(key)
|
||||
if t2 is None:
|
||||
t2 = torch.zeros_like(theta_0[key])
|
||||
|
||||
theta_0[key] = theta_func(theta_0[key], theta_1[key], t2, multiplier)
|
||||
|
||||
if save_as_half:
|
||||
theta_0[key] = theta_0[key].half()
|
||||
|
||||
|
||||
# I believe this part should be discarded, but I'll leave it for now until I am sure
|
||||
for key in theta_1.keys():
|
||||
if 'model' in key and key not in theta_0:
|
||||
theta_0[key] = theta_1[key]
|
||||
@ -193,7 +213,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, interp_method, int
|
||||
|
||||
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
||||
|
||||
filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
||||
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
||||
filename = filename if custom_name == '' else (custom_name + '.ckpt')
|
||||
output_modelname = os.path.join(ckpt_dir, filename)
|
||||
|
||||
@ -203,4 +223,4 @@ def run_modelmerger(primary_model_name, secondary_model_name, interp_method, int
|
||||
sd_models.list_models()
|
||||
|
||||
print(f"Checkpoint saved.")
|
||||
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(3)]
|
||||
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
||||
|
@ -1,5 +1,8 @@
|
||||
import os
|
||||
import re
|
||||
import gradio as gr
|
||||
from modules.shared import script_path
|
||||
from modules import shared
|
||||
|
||||
re_param_code = r"\s*([\w ]+):\s*([^,]+)(?:,|$)"
|
||||
re_param = re.compile(re_param_code)
|
||||
@ -61,6 +64,12 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
||||
|
||||
def connect_paste(button, paste_fields, input_comp, js=None):
|
||||
def paste_func(prompt):
|
||||
if not prompt and not shared.cmd_opts.hide_ui_dir_config:
|
||||
filename = os.path.join(script_path, "params.txt")
|
||||
if os.path.exists(filename):
|
||||
with open(filename, "r", encoding="utf8") as file:
|
||||
prompt = file.read()
|
||||
|
||||
params = parse_generation_parameters(prompt)
|
||||
res = []
|
||||
|
||||
|
@ -21,7 +21,7 @@ def gfpgann():
|
||||
global loaded_gfpgan_model
|
||||
global model_path
|
||||
if loaded_gfpgan_model is not None:
|
||||
loaded_gfpgan_model.gfpgan.to(shared.device)
|
||||
loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan)
|
||||
return loaded_gfpgan_model
|
||||
|
||||
if gfpgan_constructor is None:
|
||||
@ -37,22 +37,32 @@ def gfpgann():
|
||||
print("Unable to load gfpgan model!")
|
||||
return None
|
||||
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
||||
model.gfpgan.to(shared.device)
|
||||
loaded_gfpgan_model = model
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def send_model_to(model, device):
|
||||
model.gfpgan.to(device)
|
||||
model.face_helper.face_det.to(device)
|
||||
model.face_helper.face_parse.to(device)
|
||||
|
||||
|
||||
def gfpgan_fix_faces(np_image):
|
||||
model = gfpgann()
|
||||
if model is None:
|
||||
return np_image
|
||||
|
||||
send_model_to(model, devices.device_gfpgan)
|
||||
|
||||
np_image_bgr = np_image[:, :, ::-1]
|
||||
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
|
||||
np_image = gfpgan_output_bgr[:, :, ::-1]
|
||||
|
||||
model.face_helper.clean_all()
|
||||
|
||||
if shared.opts.face_restoration_unload:
|
||||
model.gfpgan.to(devices.cpu)
|
||||
send_model_to(model, devices.cpu)
|
||||
|
||||
return np_image
|
||||
|
||||
@ -97,11 +107,7 @@ def setup_model(dirname):
|
||||
return "GFPGAN"
|
||||
|
||||
def restore(self, np_image):
|
||||
np_image_bgr = np_image[:, :, ::-1]
|
||||
cropped_faces, restored_faces, gfpgan_output_bgr = gfpgann().enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
|
||||
np_image = gfpgan_output_bgr[:, :, ::-1]
|
||||
|
||||
return np_image
|
||||
return gfpgan_fix_faces(np_image)
|
||||
|
||||
shared.face_restorers.append(FaceRestorerGFPGAN())
|
||||
except Exception:
|
||||
|
347
modules/hypernetworks/hypernetwork.py
Normal file
347
modules/hypernetworks/hypernetwork.py
Normal file
@ -0,0 +1,347 @@
|
||||
import datetime
|
||||
import glob
|
||||
import html
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
import tqdm
|
||||
import csv
|
||||
|
||||
import torch
|
||||
|
||||
from ldm.util import default
|
||||
from modules import devices, shared, processing, sd_models
|
||||
import torch
|
||||
from torch import einsum
|
||||
from einops import rearrange, repeat
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion import textual_inversion
|
||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
multiplier = 1.0
|
||||
|
||||
def __init__(self, dim, state_dict=None):
|
||||
super().__init__()
|
||||
|
||||
self.linear1 = torch.nn.Linear(dim, dim * 2)
|
||||
self.linear2 = torch.nn.Linear(dim * 2, dim)
|
||||
|
||||
if state_dict is not None:
|
||||
self.load_state_dict(state_dict, strict=True)
|
||||
else:
|
||||
|
||||
self.linear1.weight.data.normal_(mean=0.0, std=0.01)
|
||||
self.linear1.bias.data.zero_()
|
||||
self.linear2.weight.data.normal_(mean=0.0, std=0.01)
|
||||
self.linear2.bias.data.zero_()
|
||||
|
||||
self.to(devices.device)
|
||||
|
||||
def forward(self, x):
|
||||
return x + (self.linear2(self.linear1(x))) * self.multiplier
|
||||
|
||||
|
||||
def apply_strength(value=None):
|
||||
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
|
||||
|
||||
|
||||
class Hypernetwork:
|
||||
filename = None
|
||||
name = None
|
||||
|
||||
def __init__(self, name=None, enable_sizes=None):
|
||||
self.filename = None
|
||||
self.name = name
|
||||
self.layers = {}
|
||||
self.step = 0
|
||||
self.sd_checkpoint = None
|
||||
self.sd_checkpoint_name = None
|
||||
|
||||
for size in enable_sizes or []:
|
||||
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
|
||||
|
||||
def weights(self):
|
||||
res = []
|
||||
|
||||
for k, layers in self.layers.items():
|
||||
for layer in layers:
|
||||
layer.train()
|
||||
res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
|
||||
|
||||
return res
|
||||
|
||||
def save(self, filename):
|
||||
state_dict = {}
|
||||
|
||||
for k, v in self.layers.items():
|
||||
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
||||
|
||||
state_dict['step'] = self.step
|
||||
state_dict['name'] = self.name
|
||||
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
||||
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
||||
|
||||
torch.save(state_dict, filename)
|
||||
|
||||
def load(self, filename):
|
||||
self.filename = filename
|
||||
if self.name is None:
|
||||
self.name = os.path.splitext(os.path.basename(filename))[0]
|
||||
|
||||
state_dict = torch.load(filename, map_location='cpu')
|
||||
|
||||
for size, sd in state_dict.items():
|
||||
if type(size) == int:
|
||||
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
||||
|
||||
self.name = state_dict.get('name', self.name)
|
||||
self.step = state_dict.get('step', 0)
|
||||
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
|
||||
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
||||
|
||||
|
||||
def list_hypernetworks(path):
|
||||
res = {}
|
||||
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
res[name] = filename
|
||||
return res
|
||||
|
||||
|
||||
def load_hypernetwork(filename):
|
||||
path = shared.hypernetworks.get(filename, None)
|
||||
if path is not None:
|
||||
print(f"Loading hypernetwork {filename}")
|
||||
try:
|
||||
shared.loaded_hypernetwork = Hypernetwork()
|
||||
shared.loaded_hypernetwork.load(path)
|
||||
|
||||
except Exception:
|
||||
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
else:
|
||||
if shared.loaded_hypernetwork is not None:
|
||||
print(f"Unloading hypernetwork")
|
||||
|
||||
shared.loaded_hypernetwork = None
|
||||
|
||||
|
||||
def find_closest_hypernetwork_name(search: str):
|
||||
if not search:
|
||||
return None
|
||||
search = search.lower()
|
||||
applicable = [name for name in shared.hypernetworks if search in name.lower()]
|
||||
if not applicable:
|
||||
return None
|
||||
applicable = sorted(applicable, key=lambda name: len(name))
|
||||
return applicable[0]
|
||||
|
||||
|
||||
def apply_hypernetwork(hypernetwork, context, layer=None):
|
||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||
|
||||
if hypernetwork_layers is None:
|
||||
return context, context
|
||||
|
||||
if layer is not None:
|
||||
layer.hyper_k = hypernetwork_layers[0]
|
||||
layer.hyper_v = hypernetwork_layers[1]
|
||||
|
||||
context_k = hypernetwork_layers[0](context)
|
||||
context_v = hypernetwork_layers[1](context)
|
||||
return context_k, context_v
|
||||
|
||||
|
||||
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
|
||||
k = self.to_k(context_k)
|
||||
v = self.to_v(context_v)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||
|
||||
if mask is not None:
|
||||
mask = rearrange(mask, 'b ... -> b (...)')
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
attn = sim.softmax(dim=-1)
|
||||
|
||||
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
def stack_conds(conds):
|
||||
if len(conds) == 1:
|
||||
return torch.stack(conds)
|
||||
|
||||
# same as in reconstruct_multicond_batch
|
||||
token_count = max([x.shape[0] for x in conds])
|
||||
for i in range(len(conds)):
|
||||
if conds[i].shape[0] != token_count:
|
||||
last_vector = conds[i][-1:]
|
||||
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
|
||||
conds[i] = torch.vstack([conds[i], last_vector_repeated])
|
||||
|
||||
return torch.stack(conds)
|
||||
|
||||
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
assert hypernetwork_name, 'hypernetwork not selected'
|
||||
|
||||
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||
shared.loaded_hypernetwork = Hypernetwork()
|
||||
shared.loaded_hypernetwork.load(path)
|
||||
|
||||
shared.state.textinfo = "Initializing hypernetwork training..."
|
||||
shared.state.job_count = steps
|
||||
|
||||
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||
|
||||
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
||||
unload = shared.opts.unload_models_when_training
|
||||
|
||||
if save_hypernetwork_every > 0:
|
||||
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
|
||||
os.makedirs(hypernetwork_dir, exist_ok=True)
|
||||
else:
|
||||
hypernetwork_dir = None
|
||||
|
||||
if create_image_every > 0:
|
||||
images_dir = os.path.join(log_directory, "images")
|
||||
os.makedirs(images_dir, exist_ok=True)
|
||||
else:
|
||||
images_dir = None
|
||||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
|
||||
|
||||
if unload:
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
hypernetwork = shared.loaded_hypernetwork
|
||||
weights = hypernetwork.weights()
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
|
||||
losses = torch.zeros((32,))
|
||||
|
||||
last_saved_file = "<none>"
|
||||
last_saved_image = "<none>"
|
||||
|
||||
ititial_step = hypernetwork.step or 0
|
||||
if ititial_step > steps:
|
||||
return hypernetwork, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||
for i, entries in pbar:
|
||||
hypernetwork.step = i + ititial_step
|
||||
|
||||
scheduler.apply(optimizer, hypernetwork.step)
|
||||
if scheduler.finished:
|
||||
break
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
|
||||
# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
|
||||
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
|
||||
loss = shared.sd_model(x, c)[0]
|
||||
del x
|
||||
del c
|
||||
|
||||
losses[hypernetwork.step % losses.shape[0]] = loss.item()
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
pbar.set_description(f"loss: {losses.mean():.7f}")
|
||||
|
||||
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
|
||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
|
||||
hypernetwork.save(last_saved_file)
|
||||
|
||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
|
||||
"loss": f"{losses.mean():.7f}",
|
||||
"learn_rate": scheduler.learn_rate
|
||||
})
|
||||
|
||||
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
||||
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
|
||||
|
||||
optimizer.zero_grad()
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
)
|
||||
|
||||
if preview_from_txt2img:
|
||||
p.prompt = preview_prompt
|
||||
p.negative_prompt = preview_negative_prompt
|
||||
p.steps = preview_steps
|
||||
p.sampler_index = preview_sampler_index
|
||||
p.cfg_scale = preview_cfg_scale
|
||||
p.seed = preview_seed
|
||||
p.width = preview_width
|
||||
p.height = preview_height
|
||||
else:
|
||||
p.prompt = entries[0].cond_text
|
||||
p.steps = 20
|
||||
|
||||
preview_text = p.prompt
|
||||
|
||||
processed = processing.process_images(p)
|
||||
image = processed.images[0] if len(processed.images)>0 else None
|
||||
|
||||
if unload:
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
if image is not None:
|
||||
shared.state.current_image = image
|
||||
image.save(last_saved_image)
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
shared.state.job_no = hypernetwork.step
|
||||
|
||||
shared.state.textinfo = f"""
|
||||
<p>
|
||||
Loss: {losses.mean():.7f}<br/>
|
||||
Step: {hypernetwork.step}<br/>
|
||||
Last prompt: {html.escape(entries[0].cond_text)}<br/>
|
||||
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
||||
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
</p>
|
||||
"""
|
||||
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
|
||||
hypernetwork.sd_checkpoint = checkpoint.hash
|
||||
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
||||
hypernetwork.save(filename)
|
||||
|
||||
return hypernetwork, filename
|
||||
|
||||
|
47
modules/hypernetworks/ui.py
Normal file
47
modules/hypernetworks/ui.py
Normal file
@ -0,0 +1,47 @@
|
||||
import html
|
||||
import os
|
||||
|
||||
import gradio as gr
|
||||
|
||||
import modules.textual_inversion.textual_inversion
|
||||
import modules.textual_inversion.preprocess
|
||||
from modules import sd_hijack, shared, devices
|
||||
from modules.hypernetworks import hypernetwork
|
||||
|
||||
|
||||
def create_hypernetwork(name, enable_sizes):
|
||||
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
||||
assert not os.path.exists(fn), f"file {fn} already exists"
|
||||
|
||||
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes])
|
||||
hypernet.save(fn)
|
||||
|
||||
shared.reload_hypernetworks()
|
||||
|
||||
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
|
||||
|
||||
|
||||
def train_hypernetwork(*args):
|
||||
|
||||
initial_hypernetwork = shared.loaded_hypernetwork
|
||||
|
||||
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
|
||||
|
||||
try:
|
||||
sd_hijack.undo_optimizations()
|
||||
|
||||
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
|
||||
|
||||
res = f"""
|
||||
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
|
||||
Hypernetwork saved to {html.escape(filename)}
|
||||
"""
|
||||
return res, ""
|
||||
except Exception:
|
||||
raise
|
||||
finally:
|
||||
shared.loaded_hypernetwork = initial_hypernetwork
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
sd_hijack.apply_optimizations()
|
||||
|
@ -1,4 +1,5 @@
|
||||
import datetime
|
||||
import io
|
||||
import math
|
||||
import os
|
||||
from collections import namedtuple
|
||||
@ -23,6 +24,10 @@ def image_grid(imgs, batch_size=1, rows=None):
|
||||
rows = opts.n_rows
|
||||
elif opts.n_rows == 0:
|
||||
rows = batch_size
|
||||
elif opts.grid_prevent_empty_spots:
|
||||
rows = math.floor(math.sqrt(len(imgs)))
|
||||
while len(imgs) % rows != 0:
|
||||
rows -= 1
|
||||
else:
|
||||
rows = math.sqrt(len(imgs))
|
||||
rows = round(rows)
|
||||
@ -287,6 +292,20 @@ def apply_filename_pattern(x, p, seed, prompt):
|
||||
if seed is not None:
|
||||
x = x.replace("[seed]", str(seed))
|
||||
|
||||
if p is not None:
|
||||
x = x.replace("[steps]", str(p.steps))
|
||||
x = x.replace("[cfg]", str(p.cfg_scale))
|
||||
x = x.replace("[width]", str(p.width))
|
||||
x = x.replace("[height]", str(p.height))
|
||||
x = x.replace("[styles]", sanitize_filename_part(", ".join([x for x in p.styles if not x == "None"]) or "None", replace_spaces=False))
|
||||
x = x.replace("[sampler]", sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False))
|
||||
|
||||
x = x.replace("[model_hash]", getattr(p, "sd_model_hash", shared.sd_model.sd_model_hash))
|
||||
x = x.replace("[date]", datetime.date.today().isoformat())
|
||||
x = x.replace("[datetime]", datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
|
||||
x = x.replace("[job_timestamp]", getattr(p, "job_timestamp", shared.state.job_timestamp))
|
||||
|
||||
# Apply [prompt] at last. Because it may contain any replacement word.^M
|
||||
if prompt is not None:
|
||||
x = x.replace("[prompt]", sanitize_filename_part(prompt))
|
||||
if "[prompt_no_styles]" in x:
|
||||
@ -295,7 +314,7 @@ def apply_filename_pattern(x, p, seed, prompt):
|
||||
if len(style) > 0:
|
||||
style_parts = [y for y in style.split("{prompt}")]
|
||||
for part in style_parts:
|
||||
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
|
||||
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
|
||||
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
|
||||
x = x.replace("[prompt_no_styles]", sanitize_filename_part(prompt_no_style, replace_spaces=False))
|
||||
|
||||
@ -306,19 +325,6 @@ def apply_filename_pattern(x, p, seed, prompt):
|
||||
words = ["empty"]
|
||||
x = x.replace("[prompt_words]", sanitize_filename_part(" ".join(words[0:max_prompt_words]), replace_spaces=False))
|
||||
|
||||
if p is not None:
|
||||
x = x.replace("[steps]", str(p.steps))
|
||||
x = x.replace("[cfg]", str(p.cfg_scale))
|
||||
x = x.replace("[width]", str(p.width))
|
||||
x = x.replace("[height]", str(p.height))
|
||||
x = x.replace("[styles]", sanitize_filename_part(", ".join([x for x in p.styles if not x == "None"]), replace_spaces=False))
|
||||
x = x.replace("[sampler]", sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False))
|
||||
|
||||
x = x.replace("[model_hash]", shared.sd_model.sd_model_hash)
|
||||
x = x.replace("[date]", datetime.date.today().isoformat())
|
||||
x = x.replace("[datetime]", datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
|
||||
x = x.replace("[job_timestamp]", shared.state.job_timestamp)
|
||||
|
||||
if cmd_opts.hide_ui_dir_config:
|
||||
x = re.sub(r'^[\\/]+|\.{2,}[\\/]+|[\\/]+\.{2,}', '', x)
|
||||
|
||||
@ -347,7 +353,39 @@ def get_next_sequence_number(path, basename):
|
||||
return result + 1
|
||||
|
||||
|
||||
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix=""):
|
||||
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
|
||||
'''Save an image.
|
||||
|
||||
Args:
|
||||
image (`PIL.Image`):
|
||||
The image to be saved.
|
||||
path (`str`):
|
||||
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
|
||||
basename (`str`):
|
||||
The base filename which will be applied to `filename pattern`.
|
||||
seed, prompt, short_filename,
|
||||
extension (`str`):
|
||||
Image file extension, default is `png`.
|
||||
pngsectionname (`str`):
|
||||
Specify the name of the section which `info` will be saved in.
|
||||
info (`str` or `PngImagePlugin.iTXt`):
|
||||
PNG info chunks.
|
||||
existing_info (`dict`):
|
||||
Additional PNG info. `existing_info == {pngsectionname: info, ...}`
|
||||
no_prompt:
|
||||
TODO I don't know its meaning.
|
||||
p (`StableDiffusionProcessing`)
|
||||
forced_filename (`str`):
|
||||
If specified, `basename` and filename pattern will be ignored.
|
||||
save_to_dirs (bool):
|
||||
If true, the image will be saved into a subdirectory of `path`.
|
||||
|
||||
Returns: (fullfn, txt_fullfn)
|
||||
fullfn (`str`):
|
||||
The full path of the saved imaged.
|
||||
txt_fullfn (`str` or None):
|
||||
If a text file is saved for this image, this will be its full path. Otherwise None.
|
||||
'''
|
||||
if short_filename or prompt is None or seed is None:
|
||||
file_decoration = ""
|
||||
elif opts.save_to_dirs:
|
||||
@ -371,10 +409,11 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
||||
else:
|
||||
pnginfo = None
|
||||
|
||||
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
|
||||
if save_to_dirs is None:
|
||||
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
|
||||
|
||||
if save_to_dirs:
|
||||
dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, seed, prompt)
|
||||
dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, seed, prompt).strip('\\ /')
|
||||
path = os.path.join(path, dirname)
|
||||
|
||||
os.makedirs(path, exist_ok=True)
|
||||
@ -422,7 +461,29 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
||||
piexif.insert(exif_bytes(), fullfn_without_extension + ".jpg")
|
||||
|
||||
if opts.save_txt and info is not None:
|
||||
with open(f"{fullfn_without_extension}.txt", "w", encoding="utf8") as file:
|
||||
txt_fullfn = f"{fullfn_without_extension}.txt"
|
||||
with open(txt_fullfn, "w", encoding="utf8") as file:
|
||||
file.write(info + "\n")
|
||||
else:
|
||||
txt_fullfn = None
|
||||
|
||||
return fullfn, txt_fullfn
|
||||
|
||||
|
||||
def image_data(data):
|
||||
try:
|
||||
image = Image.open(io.BytesIO(data))
|
||||
textinfo = image.text["parameters"]
|
||||
return textinfo, None
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
try:
|
||||
text = data.decode('utf8')
|
||||
assert len(text) < 10000
|
||||
return text, None
|
||||
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return '', None
|
||||
|
181
modules/images_history.py
Normal file
181
modules/images_history.py
Normal file
@ -0,0 +1,181 @@
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
||||
def traverse_all_files(output_dir, image_list, curr_dir=None):
|
||||
curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir)
|
||||
try:
|
||||
f_list = os.listdir(curr_path)
|
||||
except:
|
||||
if curr_dir[-10:].rfind(".") > 0 and curr_dir[-4:] != ".txt":
|
||||
image_list.append(curr_dir)
|
||||
return image_list
|
||||
for file in f_list:
|
||||
file = file if curr_dir is None else os.path.join(curr_dir, file)
|
||||
file_path = os.path.join(curr_path, file)
|
||||
if file[-4:] == ".txt":
|
||||
pass
|
||||
elif os.path.isfile(file_path) and file[-10:].rfind(".") > 0:
|
||||
image_list.append(file)
|
||||
else:
|
||||
image_list = traverse_all_files(output_dir, image_list, file)
|
||||
return image_list
|
||||
|
||||
|
||||
def get_recent_images(dir_name, page_index, step, image_index, tabname):
|
||||
page_index = int(page_index)
|
||||
f_list = os.listdir(dir_name)
|
||||
image_list = []
|
||||
image_list = traverse_all_files(dir_name, image_list)
|
||||
image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file)))
|
||||
num = 48 if tabname != "extras" else 12
|
||||
max_page_index = len(image_list) // num + 1
|
||||
page_index = max_page_index if page_index == -1 else page_index + step
|
||||
page_index = 1 if page_index < 1 else page_index
|
||||
page_index = max_page_index if page_index > max_page_index else page_index
|
||||
idx_frm = (page_index - 1) * num
|
||||
image_list = image_list[idx_frm:idx_frm + num]
|
||||
image_index = int(image_index)
|
||||
if image_index < 0 or image_index > len(image_list) - 1:
|
||||
current_file = None
|
||||
hidden = None
|
||||
else:
|
||||
current_file = image_list[int(image_index)]
|
||||
hidden = os.path.join(dir_name, current_file)
|
||||
return [os.path.join(dir_name, file) for file in image_list], page_index, image_list, current_file, hidden, ""
|
||||
|
||||
|
||||
def first_page_click(dir_name, page_index, image_index, tabname):
|
||||
return get_recent_images(dir_name, 1, 0, image_index, tabname)
|
||||
|
||||
|
||||
def end_page_click(dir_name, page_index, image_index, tabname):
|
||||
return get_recent_images(dir_name, -1, 0, image_index, tabname)
|
||||
|
||||
|
||||
def prev_page_click(dir_name, page_index, image_index, tabname):
|
||||
return get_recent_images(dir_name, page_index, -1, image_index, tabname)
|
||||
|
||||
|
||||
def next_page_click(dir_name, page_index, image_index, tabname):
|
||||
return get_recent_images(dir_name, page_index, 1, image_index, tabname)
|
||||
|
||||
|
||||
def page_index_change(dir_name, page_index, image_index, tabname):
|
||||
return get_recent_images(dir_name, page_index, 0, image_index, tabname)
|
||||
|
||||
|
||||
def show_image_info(num, image_path, filenames):
|
||||
# print(f"select image {num}")
|
||||
file = filenames[int(num)]
|
||||
return file, num, os.path.join(image_path, file)
|
||||
|
||||
|
||||
def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, image_index):
|
||||
if name == "":
|
||||
return filenames, delete_num
|
||||
else:
|
||||
delete_num = int(delete_num)
|
||||
index = list(filenames).index(name)
|
||||
i = 0
|
||||
new_file_list = []
|
||||
for name in filenames:
|
||||
if i >= index and i < index + delete_num:
|
||||
path = os.path.join(dir_name, name)
|
||||
if os.path.exists(path):
|
||||
print(f"Delete file {path}")
|
||||
os.remove(path)
|
||||
txt_file = os.path.splitext(path)[0] + ".txt"
|
||||
if os.path.exists(txt_file):
|
||||
os.remove(txt_file)
|
||||
else:
|
||||
print(f"Not exists file {path}")
|
||||
else:
|
||||
new_file_list.append(name)
|
||||
i += 1
|
||||
return new_file_list, 1
|
||||
|
||||
|
||||
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
|
||||
if opts.outdir_samples != "":
|
||||
dir_name = opts.outdir_samples
|
||||
elif tabname == "txt2img":
|
||||
dir_name = opts.outdir_txt2img_samples
|
||||
elif tabname == "img2img":
|
||||
dir_name = opts.outdir_img2img_samples
|
||||
elif tabname == "extras":
|
||||
dir_name = opts.outdir_extras_samples
|
||||
d = dir_name.split("/")
|
||||
dir_name = "/" if dir_name.startswith("/") else d[0]
|
||||
for p in d[1:]:
|
||||
dir_name = os.path.join(dir_name, p)
|
||||
with gr.Row():
|
||||
renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page")
|
||||
first_page = gr.Button('First Page')
|
||||
prev_page = gr.Button('Prev Page')
|
||||
page_index = gr.Number(value=1, label="Page Index")
|
||||
next_page = gr.Button('Next Page')
|
||||
end_page = gr.Button('End Page')
|
||||
with gr.Row(elem_id=tabname + "_images_history"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=2):
|
||||
history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
|
||||
with gr.Row():
|
||||
delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
|
||||
delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
|
||||
pnginfo_send_to_img2img = gr.Button('Send to img2img')
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
img_file_info = gr.Textbox(label="Generate Info", interactive=False)
|
||||
img_file_name = gr.Textbox(label="File Name", interactive=False)
|
||||
with gr.Row():
|
||||
# hiden items
|
||||
|
||||
img_path = gr.Textbox(dir_name.rstrip("/"), visible=False)
|
||||
tabname_box = gr.Textbox(tabname, visible=False)
|
||||
image_index = gr.Textbox(value=-1, visible=False)
|
||||
set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False)
|
||||
filenames = gr.State()
|
||||
hidden = gr.Image(type="pil", visible=False)
|
||||
info1 = gr.Textbox(visible=False)
|
||||
info2 = gr.Textbox(visible=False)
|
||||
|
||||
# turn pages
|
||||
gallery_inputs = [img_path, page_index, image_index, tabname_box]
|
||||
gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name]
|
||||
|
||||
first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
||||
next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
||||
prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
||||
end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
||||
page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
||||
renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
|
||||
# page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
|
||||
|
||||
# other funcitons
|
||||
set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden])
|
||||
img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
|
||||
delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
|
||||
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
|
||||
|
||||
# pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
|
||||
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
|
||||
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
|
||||
|
||||
|
||||
def create_history_tabs(gr, opts, run_pnginfo, switch_dict):
|
||||
with gr.Blocks(analytics_enabled=False) as images_history:
|
||||
with gr.Tabs() as tabs:
|
||||
with gr.Tab("txt2img history"):
|
||||
with gr.Blocks(analytics_enabled=False) as images_history_txt2img:
|
||||
show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict)
|
||||
with gr.Tab("img2img history"):
|
||||
with gr.Blocks(analytics_enabled=False) as images_history_img2img:
|
||||
show_images_history(gr, opts, "img2img", run_pnginfo, switch_dict)
|
||||
with gr.Tab("extras history"):
|
||||
with gr.Blocks(analytics_enabled=False) as images_history_img2img:
|
||||
show_images_history(gr, opts, "extras", run_pnginfo, switch_dict)
|
||||
return images_history
|
@ -23,13 +23,17 @@ def process_batch(p, input_dir, output_dir, args):
|
||||
|
||||
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
||||
|
||||
save_normally = output_dir == ''
|
||||
|
||||
p.do_not_save_grid = True
|
||||
p.do_not_save_samples = True
|
||||
p.do_not_save_samples = not save_normally
|
||||
|
||||
state.job_count = len(images) * p.n_iter
|
||||
|
||||
for i, image in enumerate(images):
|
||||
state.job = f"{i+1} out of {len(images)}"
|
||||
if state.skipped:
|
||||
state.skipped = False
|
||||
|
||||
if state.interrupted:
|
||||
break
|
||||
@ -48,7 +52,8 @@ def process_batch(p, input_dir, output_dir, args):
|
||||
left, right = os.path.splitext(filename)
|
||||
filename = f"{left}-{n}{right}"
|
||||
|
||||
processed_image.save(os.path.join(output_dir, filename))
|
||||
if not save_normally:
|
||||
processed_image.save(os.path.join(output_dir, filename))
|
||||
|
||||
|
||||
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
|
||||
@ -103,7 +108,9 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
||||
inpaint_full_res_padding=inpaint_full_res_padding,
|
||||
inpainting_mask_invert=inpainting_mask_invert,
|
||||
)
|
||||
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
||||
|
||||
if shared.cmd_opts.enable_console_prompts:
|
||||
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
||||
|
||||
p.extra_generation_params["Mask blur"] = mask_blur
|
||||
|
||||
@ -124,4 +131,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
||||
if opts.samples_log_stdout:
|
||||
print(generation_info_js)
|
||||
|
||||
if opts.do_not_show_images:
|
||||
processed.images = []
|
||||
|
||||
return processed.images, generation_info_js, plaintext_to_html(processed.info)
|
||||
|
@ -21,6 +21,7 @@ Category = namedtuple("Category", ["name", "topn", "items"])
|
||||
|
||||
re_topn = re.compile(r"\.top(\d+)\.")
|
||||
|
||||
|
||||
class InterrogateModels:
|
||||
blip_model = None
|
||||
clip_model = None
|
||||
@ -54,7 +55,7 @@ class InterrogateModels:
|
||||
|
||||
model, preprocess = clip.load(clip_model_name)
|
||||
model.eval()
|
||||
model = model.to(shared.device)
|
||||
model = model.to(devices.device_interrogate)
|
||||
|
||||
return model, preprocess
|
||||
|
||||
@ -64,14 +65,14 @@ class InterrogateModels:
|
||||
if not shared.cmd_opts.no_half:
|
||||
self.blip_model = self.blip_model.half()
|
||||
|
||||
self.blip_model = self.blip_model.to(shared.device)
|
||||
self.blip_model = self.blip_model.to(devices.device_interrogate)
|
||||
|
||||
if self.clip_model is None:
|
||||
self.clip_model, self.clip_preprocess = self.load_clip_model()
|
||||
if not shared.cmd_opts.no_half:
|
||||
self.clip_model = self.clip_model.half()
|
||||
|
||||
self.clip_model = self.clip_model.to(shared.device)
|
||||
self.clip_model = self.clip_model.to(devices.device_interrogate)
|
||||
|
||||
self.dtype = next(self.clip_model.parameters()).dtype
|
||||
|
||||
@ -98,11 +99,11 @@ class InterrogateModels:
|
||||
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
|
||||
|
||||
top_count = min(top_count, len(text_array))
|
||||
text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device)
|
||||
text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
|
||||
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
|
||||
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
similarity = torch.zeros((1, len(text_array))).to(shared.device)
|
||||
similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
|
||||
for i in range(image_features.shape[0]):
|
||||
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
||||
similarity /= image_features.shape[0]
|
||||
@ -115,14 +116,14 @@ class InterrogateModels:
|
||||
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||||
])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
|
||||
])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
||||
|
||||
with torch.no_grad():
|
||||
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
|
||||
|
||||
return caption[0]
|
||||
|
||||
def interrogate(self, pil_image):
|
||||
def interrogate(self, pil_image, include_ranks=False):
|
||||
res = None
|
||||
|
||||
try:
|
||||
@ -139,11 +140,11 @@ class InterrogateModels:
|
||||
|
||||
res = caption
|
||||
|
||||
cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
|
||||
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
||||
|
||||
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
|
||||
with torch.no_grad(), precision_scope("cuda"):
|
||||
image_features = self.clip_model.encode_image(cilp_image).type(self.dtype)
|
||||
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
|
||||
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
@ -155,7 +156,10 @@ class InterrogateModels:
|
||||
for name, topn, items in self.categories:
|
||||
matches = self.rank(image_features, items, top_count=topn)
|
||||
for match, score in matches:
|
||||
res += ", " + match
|
||||
if include_ranks:
|
||||
res += ", " + match
|
||||
else:
|
||||
res += f", ({match}:{score})"
|
||||
|
||||
except Exception:
|
||||
print(f"Error interrogating", file=sys.stderr)
|
||||
|
@ -7,13 +7,11 @@ from basicsr.utils.download_util import load_file_from_url
|
||||
from modules.upscaler import Upscaler, UpscalerData
|
||||
from modules.ldsr_model_arch import LDSR
|
||||
from modules import shared
|
||||
from modules.paths import models_path
|
||||
|
||||
|
||||
class UpscalerLDSR(Upscaler):
|
||||
def __init__(self, user_path):
|
||||
self.name = "LDSR"
|
||||
self.model_path = os.path.join(models_path, self.name)
|
||||
self.user_path = user_path
|
||||
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
|
||||
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
|
||||
|
@ -5,7 +5,6 @@ import importlib
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
|
||||
from modules import shared
|
||||
from modules.upscaler import Upscaler
|
||||
from modules.paths import script_path, models_path
|
||||
@ -43,7 +42,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
|
||||
for place in places:
|
||||
if os.path.exists(place):
|
||||
for file in glob.iglob(place + '**/**', recursive=True):
|
||||
full_path = os.path.join(place, file)
|
||||
full_path = file
|
||||
if os.path.isdir(full_path):
|
||||
continue
|
||||
if len(ext_filter) != 0:
|
||||
@ -121,16 +120,30 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None):
|
||||
|
||||
|
||||
def load_upscalers():
|
||||
sd = shared.script_path
|
||||
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
|
||||
# so we'll try to import any _model.py files before looking in __subclasses__
|
||||
modules_dir = os.path.join(sd, "modules")
|
||||
for file in os.listdir(modules_dir):
|
||||
if "_model.py" in file:
|
||||
model_name = file.replace("_model.py", "")
|
||||
full_model = f"modules.{model_name}_model"
|
||||
try:
|
||||
importlib.import_module(full_model)
|
||||
except:
|
||||
pass
|
||||
datas = []
|
||||
c_o = vars(shared.cmd_opts)
|
||||
for cls in Upscaler.__subclasses__():
|
||||
name = cls.__name__
|
||||
module_name = cls.__module__
|
||||
module = importlib.import_module(module_name)
|
||||
class_ = getattr(module, name)
|
||||
cmd_name = f"{name.lower().replace('upscaler', '')}-models-path"
|
||||
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
|
||||
opt_string = None
|
||||
try:
|
||||
opt_string = shared.opts.__getattr__(cmd_name)
|
||||
if cmd_name in c_o:
|
||||
opt_string = c_o[cmd_name]
|
||||
except:
|
||||
pass
|
||||
scaler = class_(opt_string)
|
||||
|
15
modules/ngrok.py
Normal file
15
modules/ngrok.py
Normal file
@ -0,0 +1,15 @@
|
||||
from pyngrok import ngrok, conf, exception
|
||||
|
||||
|
||||
def connect(token, port):
|
||||
if token == None:
|
||||
token = 'None'
|
||||
conf.get_default().auth_token = token
|
||||
try:
|
||||
public_url = ngrok.connect(port).public_url
|
||||
except exception.PyngrokNgrokError:
|
||||
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
|
||||
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
|
||||
else:
|
||||
print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
|
||||
'You can use this link after the launch is complete.')
|
@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import modules.safe
|
||||
|
||||
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
||||
models_path = os.path.join(script_path, "models")
|
||||
@ -12,6 +13,7 @@ possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion'),
|
||||
for possible_sd_path in possible_sd_paths:
|
||||
if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')):
|
||||
sd_path = os.path.abspath(possible_sd_path)
|
||||
break
|
||||
|
||||
assert sd_path is not None, "Couldn't find Stable Diffusion in any of: " + str(possible_sd_paths)
|
||||
|
||||
@ -20,7 +22,6 @@ path_dirs = [
|
||||
(os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers', []),
|
||||
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
|
||||
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
|
||||
(os.path.join(sd_path, '../latent-diffusion'), 'LDSR.py', 'LDSR', []),
|
||||
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
|
||||
]
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
import contextlib
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
@ -12,9 +11,8 @@ import cv2
|
||||
from skimage import exposure
|
||||
|
||||
import modules.sd_hijack
|
||||
from modules import devices, prompt_parser, masking
|
||||
from modules import devices, prompt_parser, masking, sd_samplers, lowvram
|
||||
from modules.sd_hijack import model_hijack
|
||||
from modules.sd_samplers import samplers, samplers_for_img2img
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
import modules.face_restoration
|
||||
@ -48,6 +46,12 @@ def apply_color_correction(correction, image):
|
||||
return image
|
||||
|
||||
|
||||
def get_correct_sampler(p):
|
||||
if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
|
||||
return sd_samplers.samplers
|
||||
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
|
||||
return sd_samplers.samplers_for_img2img
|
||||
|
||||
class StableDiffusionProcessing:
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
|
||||
self.sd_model = sd_model
|
||||
@ -56,7 +60,7 @@ class StableDiffusionProcessing:
|
||||
self.prompt: str = prompt
|
||||
self.prompt_for_display: str = None
|
||||
self.negative_prompt: str = (negative_prompt or "")
|
||||
self.styles: str = styles
|
||||
self.styles: list = styles or []
|
||||
self.seed: int = seed
|
||||
self.subseed: int = subseed
|
||||
self.subseed_strength: float = subseed_strength
|
||||
@ -85,7 +89,7 @@ class StableDiffusionProcessing:
|
||||
self.s_tmin = opts.s_tmin
|
||||
self.s_tmax = float('inf') # not representable as a standard ui option
|
||||
self.s_noise = opts.s_noise
|
||||
|
||||
|
||||
if not seed_enable_extras:
|
||||
self.subseed = -1
|
||||
self.subseed_strength = 0
|
||||
@ -111,7 +115,7 @@ class Processed:
|
||||
self.width = p.width
|
||||
self.height = p.height
|
||||
self.sampler_index = p.sampler_index
|
||||
self.sampler = samplers[p.sampler_index].name
|
||||
self.sampler = sd_samplers.samplers[p.sampler_index].name
|
||||
self.cfg_scale = p.cfg_scale
|
||||
self.steps = p.steps
|
||||
self.batch_size = p.batch_size
|
||||
@ -123,6 +127,9 @@ class Processed:
|
||||
self.denoising_strength = getattr(p, 'denoising_strength', None)
|
||||
self.extra_generation_params = p.extra_generation_params
|
||||
self.index_of_first_image = index_of_first_image
|
||||
self.styles = p.styles
|
||||
self.job_timestamp = state.job_timestamp
|
||||
self.clip_skip = opts.CLIP_stop_at_last_layers
|
||||
|
||||
self.eta = p.eta
|
||||
self.ddim_discretize = p.ddim_discretize
|
||||
@ -133,7 +140,7 @@ class Processed:
|
||||
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
|
||||
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
|
||||
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
||||
self.seed = int(self.seed if type(self.seed) != list else self.seed[0])
|
||||
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
|
||||
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
||||
|
||||
self.all_prompts = all_prompts or [self.prompt]
|
||||
@ -167,6 +174,9 @@ class Processed:
|
||||
"extra_generation_params": self.extra_generation_params,
|
||||
"index_of_first_image": self.index_of_first_image,
|
||||
"infotexts": self.infotexts,
|
||||
"styles": self.styles,
|
||||
"job_timestamp": self.job_timestamp,
|
||||
"clip_skip": self.clip_skip,
|
||||
}
|
||||
|
||||
return json.dumps(obj)
|
||||
@ -197,7 +207,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
# enables the generation of additional tensors with noise that the sampler will use during its processing.
|
||||
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
|
||||
# produce the same images as with two batches [100], [101].
|
||||
if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds:
|
||||
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0):
|
||||
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
||||
else:
|
||||
sampler_noises = None
|
||||
@ -237,6 +247,9 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
if sampler_noises is not None:
|
||||
cnt = p.sampler.number_of_needed_noises(p)
|
||||
|
||||
if opts.eta_noise_seed_delta > 0:
|
||||
torch.manual_seed(seed + opts.eta_noise_seed_delta)
|
||||
|
||||
for j in range(cnt):
|
||||
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
||||
|
||||
@ -249,29 +262,49 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
return x
|
||||
|
||||
|
||||
def decode_first_stage(model, x):
|
||||
with devices.autocast(disable=x.dtype == devices.dtype_vae):
|
||||
x = model.decode_first_stage(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def get_fixed_seed(seed):
|
||||
if seed is None or seed == '' or seed == -1:
|
||||
return int(random.randrange(4294967294))
|
||||
|
||||
return seed
|
||||
|
||||
|
||||
def fix_seed(p):
|
||||
p.seed = int(random.randrange(4294967294)) if p.seed is None or p.seed == '' or p.seed == -1 else p.seed
|
||||
p.subseed = int(random.randrange(4294967294)) if p.subseed is None or p.subseed == '' or p.subseed == -1 else p.subseed
|
||||
p.seed = get_fixed_seed(p.seed)
|
||||
p.subseed = get_fixed_seed(p.subseed)
|
||||
|
||||
|
||||
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
|
||||
index = position_in_batch + iteration * p.batch_size
|
||||
|
||||
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
||||
|
||||
generation_params = {
|
||||
"Steps": p.steps,
|
||||
"Sampler": samplers[p.sampler_index].name,
|
||||
"Sampler": get_correct_sampler(p)[p.sampler_index].name,
|
||||
"CFG scale": p.cfg_scale,
|
||||
"Seed": all_seeds[index],
|
||||
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
||||
"Size": f"{p.width}x{p.height}",
|
||||
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
||||
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
||||
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name.replace(',', '').replace(':', '')),
|
||||
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
||||
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
||||
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
||||
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
||||
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
||||
"Denoising strength": getattr(p, 'denoising_strength', None),
|
||||
"Eta": (None if p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
||||
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
||||
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
||||
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
||||
}
|
||||
|
||||
generation_params.update(p.extra_generation_params)
|
||||
@ -290,15 +323,24 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
assert(len(p.prompt) > 0)
|
||||
else:
|
||||
assert p.prompt is not None
|
||||
|
||||
|
||||
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
|
||||
processed = Processed(p, [], p.seed, "")
|
||||
file.write(processed.infotext(p, 0))
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
fix_seed(p)
|
||||
seed = get_fixed_seed(p.seed)
|
||||
subseed = get_fixed_seed(p.subseed)
|
||||
|
||||
os.makedirs(p.outpath_samples, exist_ok=True)
|
||||
os.makedirs(p.outpath_grids, exist_ok=True)
|
||||
if p.outpath_samples is not None:
|
||||
os.makedirs(p.outpath_samples, exist_ok=True)
|
||||
|
||||
if p.outpath_grids is not None:
|
||||
os.makedirs(p.outpath_grids, exist_ok=True)
|
||||
|
||||
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
|
||||
modules.sd_hijack.model_hijack.clear_comments()
|
||||
|
||||
comments = {}
|
||||
|
||||
@ -309,33 +351,36 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
else:
|
||||
all_prompts = p.batch_size * p.n_iter * [p.prompt]
|
||||
|
||||
if type(p.seed) == list:
|
||||
all_seeds = p.seed
|
||||
if type(seed) == list:
|
||||
all_seeds = seed
|
||||
else:
|
||||
all_seeds = [int(p.seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
|
||||
all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
|
||||
|
||||
if type(p.subseed) == list:
|
||||
all_subseeds = p.subseed
|
||||
if type(subseed) == list:
|
||||
all_subseeds = subseed
|
||||
else:
|
||||
all_subseeds = [int(p.subseed) + x for x in range(len(all_prompts))]
|
||||
all_subseeds = [int(subseed) + x for x in range(len(all_prompts))]
|
||||
|
||||
def infotext(iteration=0, position_in_batch=0):
|
||||
return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
|
||||
|
||||
if os.path.exists(cmd_opts.embeddings_dir):
|
||||
model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model)
|
||||
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||
|
||||
infotexts = []
|
||||
output_images = []
|
||||
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
||||
ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
|
||||
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
||||
p.init(all_prompts, all_seeds, all_subseeds)
|
||||
|
||||
with torch.no_grad(), p.sd_model.ema_scope():
|
||||
with devices.autocast():
|
||||
p.init(all_prompts, all_seeds, all_subseeds)
|
||||
|
||||
if state.job_count == -1:
|
||||
state.job_count = p.n_iter
|
||||
|
||||
for n in range(p.n_iter):
|
||||
if state.skipped:
|
||||
state.skipped = False
|
||||
|
||||
if state.interrupted:
|
||||
break
|
||||
|
||||
@ -348,8 +393,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
|
||||
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
||||
#c = p.sd_model.get_learned_conditioning(prompts)
|
||||
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
||||
c = prompt_parser.get_learned_conditioning(prompts, p.steps)
|
||||
with devices.autocast():
|
||||
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
|
||||
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
|
||||
|
||||
if len(model_hijack.comments) > 0:
|
||||
for comment in model_hijack.comments:
|
||||
@ -358,16 +404,26 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
if p.n_iter > 1:
|
||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||
|
||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
|
||||
if state.interrupted:
|
||||
with devices.autocast():
|
||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
|
||||
|
||||
# if we are interruped, sample returns just noise
|
||||
if state.interrupted or state.skipped:
|
||||
|
||||
# if we are interrupted, sample returns just noise
|
||||
# use the image collected previously in sampler loop
|
||||
samples_ddim = shared.state.current_latent
|
||||
|
||||
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
|
||||
samples_ddim = samples_ddim.to(devices.dtype_vae)
|
||||
x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
del samples_ddim
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
lowvram.send_everything_to_cpu()
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
if opts.filter_nsfw:
|
||||
import modules.safety as safety
|
||||
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
|
||||
@ -383,6 +439,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
devices.torch_gc()
|
||||
|
||||
x_sample = modules.face_restoration.restore_faces(x_sample)
|
||||
devices.torch_gc()
|
||||
|
||||
image = Image.fromarray(x_sample)
|
||||
|
||||
@ -408,9 +465,16 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
if opts.samples_save and not p.do_not_save_samples:
|
||||
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
||||
|
||||
infotexts.append(infotext(n, i))
|
||||
text = infotext(n, i)
|
||||
infotexts.append(text)
|
||||
if opts.enable_pnginfo:
|
||||
image.info["parameters"] = text
|
||||
output_images.append(image)
|
||||
|
||||
del x_samples_ddim
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
state.nextjob()
|
||||
|
||||
p.color_corrections = None
|
||||
@ -421,7 +485,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
grid = images.image_grid(output_images, p.batch_size)
|
||||
|
||||
if opts.return_grid:
|
||||
infotexts.insert(0, infotext())
|
||||
text = infotext()
|
||||
infotexts.insert(0, text)
|
||||
if opts.enable_pnginfo:
|
||||
grid.info["parameters"] = text
|
||||
output_images.insert(0, grid)
|
||||
index_of_first_image = 1
|
||||
|
||||
@ -434,16 +501,15 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
|
||||
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
sampler = None
|
||||
firstphase_width = 0
|
||||
firstphase_height = 0
|
||||
firstphase_width_truncated = 0
|
||||
firstphase_height_truncated = 0
|
||||
|
||||
def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, **kwargs):
|
||||
def __init__(self, enable_hr=False, denoising_strength=0.75, firstphase_width=0, firstphase_height=0, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.enable_hr = enable_hr
|
||||
self.scale_latent = scale_latent
|
||||
self.denoising_strength = denoising_strength
|
||||
self.firstphase_width = firstphase_width
|
||||
self.firstphase_height = firstphase_height
|
||||
self.truncate_x = 0
|
||||
self.truncate_y = 0
|
||||
|
||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||
if self.enable_hr:
|
||||
@ -452,17 +518,34 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
else:
|
||||
state.job_count = state.job_count * 2
|
||||
|
||||
desired_pixel_count = 512 * 512
|
||||
actual_pixel_count = self.width * self.height
|
||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||
if self.firstphase_width == 0 or self.firstphase_height == 0:
|
||||
desired_pixel_count = 512 * 512
|
||||
actual_pixel_count = self.width * self.height
|
||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||
self.firstphase_width = math.ceil(scale * self.width / 64) * 64
|
||||
self.firstphase_height = math.ceil(scale * self.height / 64) * 64
|
||||
firstphase_width_truncated = int(scale * self.width)
|
||||
firstphase_height_truncated = int(scale * self.height)
|
||||
|
||||
else:
|
||||
self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
|
||||
|
||||
width_ratio = self.width / self.firstphase_width
|
||||
height_ratio = self.height / self.firstphase_height
|
||||
|
||||
if width_ratio > height_ratio:
|
||||
firstphase_width_truncated = self.firstphase_width
|
||||
firstphase_height_truncated = self.firstphase_width * self.height / self.width
|
||||
else:
|
||||
firstphase_width_truncated = self.firstphase_height * self.width / self.height
|
||||
firstphase_height_truncated = self.firstphase_height
|
||||
|
||||
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
|
||||
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
|
||||
|
||||
self.firstphase_width = math.ceil(scale * self.width / 64) * 64
|
||||
self.firstphase_height = math.ceil(scale * self.height / 64) * 64
|
||||
self.firstphase_width_truncated = int(scale * self.width)
|
||||
self.firstphase_height_truncated = int(scale * self.height)
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
||||
|
||||
if not self.enable_hr:
|
||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
@ -472,46 +555,41 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
|
||||
|
||||
truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f
|
||||
truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f
|
||||
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
|
||||
|
||||
samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2]
|
||||
decoded_samples = decode_first_stage(self.sd_model, samples)
|
||||
|
||||
if self.scale_latent:
|
||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None":
|
||||
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
|
||||
else:
|
||||
decoded_samples = self.sd_model.decode_first_stage(samples)
|
||||
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None":
|
||||
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
|
||||
else:
|
||||
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
batch_images = []
|
||||
for i, x_sample in enumerate(lowres_samples):
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
image = Image.fromarray(x_sample)
|
||||
image = images.resize_image(0, image, self.width, self.height)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = np.moveaxis(image, 2, 0)
|
||||
batch_images.append(image)
|
||||
|
||||
batch_images = []
|
||||
for i, x_sample in enumerate(lowres_samples):
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
image = Image.fromarray(x_sample)
|
||||
image = images.resize_image(0, image, self.width, self.height)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = np.moveaxis(image, 2, 0)
|
||||
batch_images.append(image)
|
||||
decoded_samples = torch.from_numpy(np.array(batch_images))
|
||||
decoded_samples = decoded_samples.to(shared.device)
|
||||
decoded_samples = 2. * decoded_samples - 1.
|
||||
|
||||
decoded_samples = torch.from_numpy(np.array(batch_images))
|
||||
decoded_samples = decoded_samples.to(shared.device)
|
||||
decoded_samples = 2. * decoded_samples - 1.
|
||||
|
||||
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
||||
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
||||
|
||||
shared.state.nextjob()
|
||||
|
||||
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
||||
|
||||
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||
|
||||
# GC now before running the next img2img to prevent running out of memory
|
||||
x = None
|
||||
devices.torch_gc()
|
||||
|
||||
|
||||
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
|
||||
|
||||
return samples
|
||||
@ -540,7 +618,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
self.nmask = None
|
||||
|
||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||
self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
|
||||
crop_region = None
|
||||
|
||||
if self.image_mask is not None:
|
||||
@ -647,4 +725,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
if self.mask is not None:
|
||||
samples = samples * self.nmask + self.init_latent * self.mask
|
||||
|
||||
del x
|
||||
devices.torch_gc()
|
||||
|
||||
return samples
|
||||
|
@ -1,19 +1,7 @@
|
||||
import re
|
||||
from collections import namedtuple
|
||||
import torch
|
||||
|
||||
import modules.shared as shared
|
||||
|
||||
re_prompt = re.compile(r'''
|
||||
(.*?)
|
||||
\[
|
||||
([^]:]+):
|
||||
(?:([^]:]*):)?
|
||||
([0-9]*\.?[0-9]+)
|
||||
]
|
||||
|
|
||||
(.+)
|
||||
''', re.X)
|
||||
from typing import List
|
||||
import lark
|
||||
|
||||
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
||||
# will be represented with prompt_schedule like this (assuming steps=100):
|
||||
@ -23,71 +11,117 @@ re_prompt = re.compile(r'''
|
||||
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
||||
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
||||
|
||||
schedule_parser = lark.Lark(r"""
|
||||
!start: (prompt | /[][():]/+)*
|
||||
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
|
||||
!emphasized: "(" prompt ")"
|
||||
| "(" prompt ":" prompt ")"
|
||||
| "[" prompt "]"
|
||||
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
|
||||
alternate: "[" prompt ("|" prompt)+ "]"
|
||||
WHITESPACE: /\s+/
|
||||
plain: /([^\\\[\]():|]|\\.)+/
|
||||
%import common.SIGNED_NUMBER -> NUMBER
|
||||
""")
|
||||
|
||||
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||
res = []
|
||||
cache = {}
|
||||
"""
|
||||
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
|
||||
>>> g("test")
|
||||
[[10, 'test']]
|
||||
>>> g("a [b:3]")
|
||||
[[3, 'a '], [10, 'a b']]
|
||||
>>> g("a [b: 3]")
|
||||
[[3, 'a '], [10, 'a b']]
|
||||
>>> g("a [[[b]]:2]")
|
||||
[[2, 'a '], [10, 'a [[b]]']]
|
||||
>>> g("[(a:2):3]")
|
||||
[[3, ''], [10, '(a:2)']]
|
||||
>>> g("a [b : c : 1] d")
|
||||
[[1, 'a b d'], [10, 'a c d']]
|
||||
>>> g("a[b:[c:d:2]:1]e")
|
||||
[[1, 'abe'], [2, 'ace'], [10, 'ade']]
|
||||
>>> g("a [unbalanced")
|
||||
[[10, 'a [unbalanced']]
|
||||
>>> g("a [b:.5] c")
|
||||
[[5, 'a c'], [10, 'a b c']]
|
||||
>>> g("a [{b|d{:.5] c") # not handling this right now
|
||||
[[5, 'a c'], [10, 'a {b|d{ c']]
|
||||
>>> g("((a][:b:c [d:3]")
|
||||
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
|
||||
"""
|
||||
|
||||
for prompt in prompts:
|
||||
prompt_schedule: list[list[str | int]] = [[steps, ""]]
|
||||
def collect_steps(steps, tree):
|
||||
l = [steps]
|
||||
class CollectSteps(lark.Visitor):
|
||||
def scheduled(self, tree):
|
||||
tree.children[-1] = float(tree.children[-1])
|
||||
if tree.children[-1] < 1:
|
||||
tree.children[-1] *= steps
|
||||
tree.children[-1] = min(steps, int(tree.children[-1]))
|
||||
l.append(tree.children[-1])
|
||||
def alternate(self, tree):
|
||||
l.extend(range(1, steps+1))
|
||||
CollectSteps().visit(tree)
|
||||
return sorted(set(l))
|
||||
|
||||
cached = cache.get(prompt, None)
|
||||
if cached is not None:
|
||||
res.append(cached)
|
||||
continue
|
||||
def at_step(step, tree):
|
||||
class AtStep(lark.Transformer):
|
||||
def scheduled(self, args):
|
||||
before, after, _, when = args
|
||||
yield before or () if step <= when else after
|
||||
def alternate(self, args):
|
||||
yield next(args[(step - 1)%len(args)])
|
||||
def start(self, args):
|
||||
def flatten(x):
|
||||
if type(x) == str:
|
||||
yield x
|
||||
else:
|
||||
for gen in x:
|
||||
yield from flatten(gen)
|
||||
return ''.join(flatten(args))
|
||||
def plain(self, args):
|
||||
yield args[0].value
|
||||
def __default__(self, data, children, meta):
|
||||
for child in children:
|
||||
yield from child
|
||||
return AtStep().transform(tree)
|
||||
|
||||
for m in re_prompt.finditer(prompt):
|
||||
plaintext = m.group(1) if m.group(5) is None else m.group(5)
|
||||
concept_from = m.group(2)
|
||||
concept_to = m.group(3)
|
||||
if concept_to is None:
|
||||
concept_to = concept_from
|
||||
concept_from = ""
|
||||
swap_position = float(m.group(4)) if m.group(4) is not None else None
|
||||
def get_schedule(prompt):
|
||||
try:
|
||||
tree = schedule_parser.parse(prompt)
|
||||
except lark.exceptions.LarkError as e:
|
||||
if 0:
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return [[steps, prompt]]
|
||||
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
|
||||
|
||||
if swap_position is not None:
|
||||
if swap_position < 1:
|
||||
swap_position = swap_position * steps
|
||||
swap_position = int(min(swap_position, steps))
|
||||
|
||||
swap_index = None
|
||||
found_exact_index = False
|
||||
for i in range(len(prompt_schedule)):
|
||||
end_step = prompt_schedule[i][0]
|
||||
prompt_schedule[i][1] += plaintext
|
||||
|
||||
if swap_position is not None and swap_index is None:
|
||||
if swap_position == end_step:
|
||||
swap_index = i
|
||||
found_exact_index = True
|
||||
|
||||
if swap_position < end_step:
|
||||
swap_index = i
|
||||
|
||||
if swap_index is not None:
|
||||
if not found_exact_index:
|
||||
prompt_schedule.insert(swap_index, [swap_position, prompt_schedule[swap_index][1]])
|
||||
|
||||
for i in range(len(prompt_schedule)):
|
||||
end_step = prompt_schedule[i][0]
|
||||
must_replace = swap_position < end_step
|
||||
|
||||
prompt_schedule[i][1] += concept_to if must_replace else concept_from
|
||||
|
||||
res.append(prompt_schedule)
|
||||
cache[prompt] = prompt_schedule
|
||||
#for t in prompt_schedule:
|
||||
# print(t)
|
||||
|
||||
return res
|
||||
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
|
||||
return [promptdict[prompt] for prompt in prompts]
|
||||
|
||||
|
||||
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
||||
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
|
||||
|
||||
|
||||
def get_learned_conditioning(prompts, steps):
|
||||
def get_learned_conditioning(model, prompts, steps):
|
||||
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
|
||||
and the sampling step at which this condition is to be replaced by the next one.
|
||||
|
||||
Input:
|
||||
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
|
||||
|
||||
Output:
|
||||
[
|
||||
[
|
||||
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
|
||||
],
|
||||
[
|
||||
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
|
||||
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
|
||||
]
|
||||
]
|
||||
"""
|
||||
res = []
|
||||
|
||||
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
||||
@ -101,7 +135,7 @@ def get_learned_conditioning(prompts, steps):
|
||||
continue
|
||||
|
||||
texts = [x[1] for x in prompt_schedule]
|
||||
conds = shared.sd_model.get_learned_conditioning(texts)
|
||||
conds = model.get_learned_conditioning(texts)
|
||||
|
||||
cond_schedule = []
|
||||
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
||||
@ -110,22 +144,118 @@ def get_learned_conditioning(prompts, steps):
|
||||
cache[prompt] = cond_schedule
|
||||
res.append(cond_schedule)
|
||||
|
||||
return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res)
|
||||
return res
|
||||
|
||||
|
||||
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
|
||||
res = torch.zeros(c.shape, device=shared.device, dtype=next(shared.sd_model.parameters()).dtype)
|
||||
for i, cond_schedule in enumerate(c.schedules):
|
||||
re_AND = re.compile(r"\bAND\b")
|
||||
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
|
||||
|
||||
def get_multicond_prompt_list(prompts):
|
||||
res_indexes = []
|
||||
|
||||
prompt_flat_list = []
|
||||
prompt_indexes = {}
|
||||
|
||||
for prompt in prompts:
|
||||
subprompts = re_AND.split(prompt)
|
||||
|
||||
indexes = []
|
||||
for subprompt in subprompts:
|
||||
match = re_weight.search(subprompt)
|
||||
|
||||
text, weight = match.groups() if match is not None else (subprompt, 1.0)
|
||||
|
||||
weight = float(weight) if weight is not None else 1.0
|
||||
|
||||
index = prompt_indexes.get(text, None)
|
||||
if index is None:
|
||||
index = len(prompt_flat_list)
|
||||
prompt_flat_list.append(text)
|
||||
prompt_indexes[text] = index
|
||||
|
||||
indexes.append((index, weight))
|
||||
|
||||
res_indexes.append(indexes)
|
||||
|
||||
return res_indexes, prompt_flat_list, prompt_indexes
|
||||
|
||||
|
||||
class ComposableScheduledPromptConditioning:
|
||||
def __init__(self, schedules, weight=1.0):
|
||||
self.schedules: List[ScheduledPromptConditioning] = schedules
|
||||
self.weight: float = weight
|
||||
|
||||
|
||||
class MulticondLearnedConditioning:
|
||||
def __init__(self, shape, batch):
|
||||
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
||||
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
|
||||
|
||||
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
||||
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
|
||||
For each prompt, the list is obtained by splitting the prompt using the AND separator.
|
||||
|
||||
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
|
||||
"""
|
||||
|
||||
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
|
||||
|
||||
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
|
||||
|
||||
res = []
|
||||
for indexes in res_indexes:
|
||||
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
|
||||
|
||||
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
||||
|
||||
|
||||
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
|
||||
param = c[0][0].cond
|
||||
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
||||
for i, cond_schedule in enumerate(c):
|
||||
target_index = 0
|
||||
for curret_index, (end_at, cond) in enumerate(cond_schedule):
|
||||
for current, (end_at, cond) in enumerate(cond_schedule):
|
||||
if current_step <= end_at:
|
||||
target_index = curret_index
|
||||
target_index = current
|
||||
break
|
||||
res[i] = cond_schedule[target_index].cond
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
|
||||
param = c.batch[0][0].schedules[0].cond
|
||||
|
||||
tensors = []
|
||||
conds_list = []
|
||||
|
||||
for batch_no, composable_prompts in enumerate(c.batch):
|
||||
conds_for_batch = []
|
||||
|
||||
for cond_index, composable_prompt in enumerate(composable_prompts):
|
||||
target_index = 0
|
||||
for current, (end_at, cond) in enumerate(composable_prompt.schedules):
|
||||
if current_step <= end_at:
|
||||
target_index = current
|
||||
break
|
||||
|
||||
conds_for_batch.append((len(tensors), composable_prompt.weight))
|
||||
tensors.append(composable_prompt.schedules[target_index].cond)
|
||||
|
||||
conds_list.append(conds_for_batch)
|
||||
|
||||
# if prompts have wildly different lengths above the limit we'll get tensors fo different shapes
|
||||
# and won't be able to torch.stack them. So this fixes that.
|
||||
token_count = max([x.shape[0] for x in tensors])
|
||||
for i in range(len(tensors)):
|
||||
if tensors[i].shape[0] != token_count:
|
||||
last_vector = tensors[i][-1:]
|
||||
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
|
||||
tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
|
||||
|
||||
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
|
||||
|
||||
|
||||
re_attention = re.compile(r"""
|
||||
\\\(|
|
||||
\\\)|
|
||||
@ -157,23 +287,26 @@ def parse_prompt_attention(text):
|
||||
\\ - literal character '\'
|
||||
anything else - just text
|
||||
|
||||
Example:
|
||||
|
||||
'a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).'
|
||||
|
||||
produces:
|
||||
|
||||
[
|
||||
['a ', 1.0],
|
||||
['house', 1.5730000000000004],
|
||||
[' ', 1.1],
|
||||
['on', 1.0],
|
||||
[' a ', 1.1],
|
||||
['hill', 0.55],
|
||||
[', sun, ', 1.1],
|
||||
['sky', 1.4641000000000006],
|
||||
['.', 1.1]
|
||||
]
|
||||
>>> parse_prompt_attention('normal text')
|
||||
[['normal text', 1.0]]
|
||||
>>> parse_prompt_attention('an (important) word')
|
||||
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
||||
>>> parse_prompt_attention('(unbalanced')
|
||||
[['unbalanced', 1.1]]
|
||||
>>> parse_prompt_attention('\(literal\]')
|
||||
[['(literal]', 1.0]]
|
||||
>>> parse_prompt_attention('(unnecessary)(parens)')
|
||||
[['unnecessaryparens', 1.1]]
|
||||
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
||||
[['a ', 1.0],
|
||||
['house', 1.5730000000000004],
|
||||
[' ', 1.1],
|
||||
['on', 1.0],
|
||||
[' a ', 1.1],
|
||||
['hill', 0.55],
|
||||
[', sun, ', 1.1],
|
||||
['sky', 1.4641000000000006],
|
||||
['.', 1.1]]
|
||||
"""
|
||||
|
||||
res = []
|
||||
@ -215,4 +348,19 @@ def parse_prompt_attention(text):
|
||||
if len(res) == 0:
|
||||
res = [["", 1.0]]
|
||||
|
||||
# merge runs of identical weights
|
||||
i = 0
|
||||
while i + 1 < len(res):
|
||||
if res[i][1] == res[i + 1][1]:
|
||||
res[i][0] += res[i + 1][0]
|
||||
res.pop(i + 1)
|
||||
else:
|
||||
i += 1
|
||||
|
||||
return res
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
|
||||
else:
|
||||
import torch # doctest faster
|
||||
|
@ -8,14 +8,12 @@ from basicsr.utils.download_util import load_file_from_url
|
||||
from realesrgan import RealESRGANer
|
||||
|
||||
from modules.upscaler import Upscaler, UpscalerData
|
||||
from modules.paths import models_path
|
||||
from modules.shared import cmd_opts, opts
|
||||
|
||||
|
||||
class UpscalerRealESRGAN(Upscaler):
|
||||
def __init__(self, path):
|
||||
self.name = "RealESRGAN"
|
||||
self.model_path = os.path.join(models_path, self.name)
|
||||
self.user_path = path
|
||||
super().__init__()
|
||||
try:
|
||||
|
117
modules/safe.py
Normal file
117
modules/safe.py
Normal file
@ -0,0 +1,117 @@
|
||||
# this code is adapted from the script contributed by anon from /h/
|
||||
|
||||
import io
|
||||
import pickle
|
||||
import collections
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import torch
|
||||
import numpy
|
||||
import _codecs
|
||||
import zipfile
|
||||
import re
|
||||
|
||||
|
||||
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
|
||||
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
|
||||
|
||||
|
||||
def encode(*args):
|
||||
out = _codecs.encode(*args)
|
||||
return out
|
||||
|
||||
|
||||
class RestrictedUnpickler(pickle.Unpickler):
|
||||
def persistent_load(self, saved_id):
|
||||
assert saved_id[0] == 'storage'
|
||||
return TypedStorage()
|
||||
|
||||
def find_class(self, module, name):
|
||||
if module == 'collections' and name == 'OrderedDict':
|
||||
return getattr(collections, name)
|
||||
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter']:
|
||||
return getattr(torch._utils, name)
|
||||
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage']:
|
||||
return getattr(torch, name)
|
||||
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
|
||||
return getattr(torch.nn.modules.container, name)
|
||||
if module == 'numpy.core.multiarray' and name == 'scalar':
|
||||
return numpy.core.multiarray.scalar
|
||||
if module == 'numpy' and name == 'dtype':
|
||||
return numpy.dtype
|
||||
if module == '_codecs' and name == 'encode':
|
||||
return encode
|
||||
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
|
||||
import pytorch_lightning.callbacks
|
||||
return pytorch_lightning.callbacks.model_checkpoint
|
||||
if module == "pytorch_lightning.callbacks.model_checkpoint" and name == 'ModelCheckpoint':
|
||||
import pytorch_lightning.callbacks.model_checkpoint
|
||||
return pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
|
||||
if module == "__builtin__" and name == 'set':
|
||||
return set
|
||||
|
||||
# Forbid everything else.
|
||||
raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden")
|
||||
|
||||
|
||||
allowed_zip_names = ["archive/data.pkl", "archive/version"]
|
||||
allowed_zip_names_re = re.compile(r"^archive/data/\d+$")
|
||||
|
||||
|
||||
def check_zip_filenames(filename, names):
|
||||
for name in names:
|
||||
if name in allowed_zip_names:
|
||||
continue
|
||||
if allowed_zip_names_re.match(name):
|
||||
continue
|
||||
|
||||
raise Exception(f"bad file inside {filename}: {name}")
|
||||
|
||||
|
||||
def check_pt(filename):
|
||||
try:
|
||||
|
||||
# new pytorch format is a zip file
|
||||
with zipfile.ZipFile(filename) as z:
|
||||
check_zip_filenames(filename, z.namelist())
|
||||
|
||||
with z.open('archive/data.pkl') as file:
|
||||
unpickler = RestrictedUnpickler(file)
|
||||
unpickler.load()
|
||||
|
||||
except zipfile.BadZipfile:
|
||||
|
||||
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
|
||||
with open(filename, "rb") as file:
|
||||
unpickler = RestrictedUnpickler(file)
|
||||
for i in range(5):
|
||||
unpickler.load()
|
||||
|
||||
|
||||
def load(filename, *args, **kwargs):
|
||||
from modules import shared
|
||||
|
||||
try:
|
||||
if not shared.cmd_opts.disable_safe_unpickle:
|
||||
check_pt(filename)
|
||||
|
||||
except pickle.UnpicklingError:
|
||||
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(f"-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
|
||||
print(f"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
|
||||
return None
|
||||
|
||||
except Exception:
|
||||
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
||||
print(f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
|
||||
return None
|
||||
|
||||
return unsafe_torch_load(filename, *args, **kwargs)
|
||||
|
||||
|
||||
unsafe_torch_load = torch.load
|
||||
torch.load = load
|
@ -162,6 +162,40 @@ class ScriptRunner:
|
||||
|
||||
return processed
|
||||
|
||||
def reload_sources(self):
|
||||
for si, script in list(enumerate(self.scripts)):
|
||||
with open(script.filename, "r", encoding="utf8") as file:
|
||||
args_from = script.args_from
|
||||
args_to = script.args_to
|
||||
filename = script.filename
|
||||
text = file.read()
|
||||
|
||||
from types import ModuleType
|
||||
|
||||
compiled = compile(text, filename, 'exec')
|
||||
module = ModuleType(script.filename)
|
||||
exec(compiled, module.__dict__)
|
||||
|
||||
for key, script_class in module.__dict__.items():
|
||||
if type(script_class) == type and issubclass(script_class, Script):
|
||||
self.scripts[si] = script_class()
|
||||
self.scripts[si].filename = filename
|
||||
self.scripts[si].args_from = args_from
|
||||
self.scripts[si].args_to = args_to
|
||||
|
||||
scripts_txt2img = ScriptRunner()
|
||||
scripts_img2img = ScriptRunner()
|
||||
|
||||
def reload_script_body_only():
|
||||
scripts_txt2img.reload_sources()
|
||||
scripts_img2img.reload_sources()
|
||||
|
||||
|
||||
def reload_scripts(basedir):
|
||||
global scripts_txt2img, scripts_img2img
|
||||
|
||||
scripts_data.clear()
|
||||
load_scripts(basedir)
|
||||
|
||||
scripts_txt2img = ScriptRunner()
|
||||
scripts_img2img = ScriptRunner()
|
||||
|
88
modules/scunet_model.py
Normal file
88
modules/scunet_model.py
Normal file
@ -0,0 +1,88 @@
|
||||
import os.path
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import PIL.Image
|
||||
import numpy as np
|
||||
import torch
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
|
||||
import modules.upscaler
|
||||
from modules import devices, modelloader
|
||||
from modules.scunet_model_arch import SCUNet as net
|
||||
|
||||
|
||||
class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||
def __init__(self, dirname):
|
||||
self.name = "ScuNET"
|
||||
self.model_name = "ScuNET GAN"
|
||||
self.model_name2 = "ScuNET PSNR"
|
||||
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
|
||||
self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
|
||||
self.user_path = dirname
|
||||
super().__init__()
|
||||
model_paths = self.find_models(ext_filter=[".pth"])
|
||||
scalers = []
|
||||
add_model2 = True
|
||||
for file in model_paths:
|
||||
if "http" in file:
|
||||
name = self.model_name
|
||||
else:
|
||||
name = modelloader.friendly_name(file)
|
||||
if name == self.model_name2 or file == self.model_url2:
|
||||
add_model2 = False
|
||||
try:
|
||||
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
|
||||
scalers.append(scaler_data)
|
||||
except Exception:
|
||||
print(f"Error loading ScuNET model: {file}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
if add_model2:
|
||||
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
|
||||
scalers.append(scaler_data2)
|
||||
self.scalers = scalers
|
||||
|
||||
def do_upscale(self, img: PIL.Image, selected_file):
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
model = self.load_model(selected_file)
|
||||
if model is None:
|
||||
return img
|
||||
|
||||
device = devices.device_scunet
|
||||
img = np.array(img)
|
||||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(device)
|
||||
|
||||
img = img.to(device)
|
||||
with torch.no_grad():
|
||||
output = model(img)
|
||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
output = 255. * np.moveaxis(output, 0, 2)
|
||||
output = output.astype(np.uint8)
|
||||
output = output[:, :, ::-1]
|
||||
torch.cuda.empty_cache()
|
||||
return PIL.Image.fromarray(output, 'RGB')
|
||||
|
||||
def load_model(self, path: str):
|
||||
device = devices.device_scunet
|
||||
if "http" in path:
|
||||
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
|
||||
progress=True)
|
||||
else:
|
||||
filename = path
|
||||
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
|
||||
print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
|
||||
return None
|
||||
|
||||
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
|
||||
model.load_state_dict(torch.load(filename), strict=True)
|
||||
model.eval()
|
||||
for k, v in model.named_parameters():
|
||||
v.requires_grad = False
|
||||
model = model.to(device)
|
||||
|
||||
return model
|
||||
|
265
modules/scunet_model_arch.py
Normal file
265
modules/scunet_model_arch.py
Normal file
@ -0,0 +1,265 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange
|
||||
from einops.layers.torch import Rearrange
|
||||
from timm.models.layers import trunc_normal_, DropPath
|
||||
|
||||
|
||||
class WMSA(nn.Module):
|
||||
""" Self-attention module in Swin Transformer
|
||||
"""
|
||||
|
||||
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
|
||||
super(WMSA, self).__init__()
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.head_dim = head_dim
|
||||
self.scale = self.head_dim ** -0.5
|
||||
self.n_heads = input_dim // head_dim
|
||||
self.window_size = window_size
|
||||
self.type = type
|
||||
self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
|
||||
|
||||
self.relative_position_params = nn.Parameter(
|
||||
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads))
|
||||
|
||||
self.linear = nn.Linear(self.input_dim, self.output_dim)
|
||||
|
||||
trunc_normal_(self.relative_position_params, std=.02)
|
||||
self.relative_position_params = torch.nn.Parameter(
|
||||
self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1,
|
||||
2).transpose(
|
||||
0, 1))
|
||||
|
||||
def generate_mask(self, h, w, p, shift):
|
||||
""" generating the mask of SW-MSA
|
||||
Args:
|
||||
shift: shift parameters in CyclicShift.
|
||||
Returns:
|
||||
attn_mask: should be (1 1 w p p),
|
||||
"""
|
||||
# supporting square.
|
||||
attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
|
||||
if self.type == 'W':
|
||||
return attn_mask
|
||||
|
||||
s = p - shift
|
||||
attn_mask[-1, :, :s, :, s:, :] = True
|
||||
attn_mask[-1, :, s:, :, :s, :] = True
|
||||
attn_mask[:, -1, :, :s, :, s:] = True
|
||||
attn_mask[:, -1, :, s:, :, :s] = True
|
||||
attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
|
||||
return attn_mask
|
||||
|
||||
def forward(self, x):
|
||||
""" Forward pass of Window Multi-head Self-attention module.
|
||||
Args:
|
||||
x: input tensor with shape of [b h w c];
|
||||
attn_mask: attention mask, fill -inf where the value is True;
|
||||
Returns:
|
||||
output: tensor shape [b h w c]
|
||||
"""
|
||||
if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
|
||||
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
|
||||
h_windows = x.size(1)
|
||||
w_windows = x.size(2)
|
||||
# square validation
|
||||
# assert h_windows == w_windows
|
||||
|
||||
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
|
||||
qkv = self.embedding_layer(x)
|
||||
q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
|
||||
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
|
||||
# Adding learnable relative embedding
|
||||
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
|
||||
# Using Attn Mask to distinguish different subwindows.
|
||||
if self.type != 'W':
|
||||
attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2)
|
||||
sim = sim.masked_fill_(attn_mask, float("-inf"))
|
||||
|
||||
probs = nn.functional.softmax(sim, dim=-1)
|
||||
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
|
||||
output = rearrange(output, 'h b w p c -> b w p (h c)')
|
||||
output = self.linear(output)
|
||||
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
|
||||
|
||||
if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
|
||||
dims=(1, 2))
|
||||
return output
|
||||
|
||||
def relative_embedding(self):
|
||||
cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
|
||||
relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
|
||||
# negative is allowed
|
||||
return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()]
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
|
||||
""" SwinTransformer Block
|
||||
"""
|
||||
super(Block, self).__init__()
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
assert type in ['W', 'SW']
|
||||
self.type = type
|
||||
if input_resolution <= window_size:
|
||||
self.type = 'W'
|
||||
|
||||
self.ln1 = nn.LayerNorm(input_dim)
|
||||
self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.ln2 = nn.LayerNorm(input_dim)
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Linear(input_dim, 4 * input_dim),
|
||||
nn.GELU(),
|
||||
nn.Linear(4 * input_dim, output_dim),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.msa(self.ln1(x)))
|
||||
x = x + self.drop_path(self.mlp(self.ln2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class ConvTransBlock(nn.Module):
|
||||
def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
|
||||
""" SwinTransformer and Conv Block
|
||||
"""
|
||||
super(ConvTransBlock, self).__init__()
|
||||
self.conv_dim = conv_dim
|
||||
self.trans_dim = trans_dim
|
||||
self.head_dim = head_dim
|
||||
self.window_size = window_size
|
||||
self.drop_path = drop_path
|
||||
self.type = type
|
||||
self.input_resolution = input_resolution
|
||||
|
||||
assert self.type in ['W', 'SW']
|
||||
if self.input_resolution <= self.window_size:
|
||||
self.type = 'W'
|
||||
|
||||
self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path,
|
||||
self.type, self.input_resolution)
|
||||
self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
|
||||
self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
|
||||
|
||||
self.conv_block = nn.Sequential(
|
||||
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
|
||||
nn.ReLU(True),
|
||||
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
|
||||
conv_x = self.conv_block(conv_x) + conv_x
|
||||
trans_x = Rearrange('b c h w -> b h w c')(trans_x)
|
||||
trans_x = self.trans_block(trans_x)
|
||||
trans_x = Rearrange('b h w c -> b c h w')(trans_x)
|
||||
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
|
||||
x = x + res
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SCUNet(nn.Module):
|
||||
# def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256):
|
||||
def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256):
|
||||
super(SCUNet, self).__init__()
|
||||
if config is None:
|
||||
config = [2, 2, 2, 2, 2, 2, 2]
|
||||
self.config = config
|
||||
self.dim = dim
|
||||
self.head_dim = 32
|
||||
self.window_size = 8
|
||||
|
||||
# drop path rate for each layer
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
|
||||
|
||||
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
|
||||
|
||||
begin = 0
|
||||
self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
|
||||
'W' if not i % 2 else 'SW', input_resolution)
|
||||
for i in range(config[0])] + \
|
||||
[nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
|
||||
|
||||
begin += config[0]
|
||||
self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||
'W' if not i % 2 else 'SW', input_resolution // 2)
|
||||
for i in range(config[1])] + \
|
||||
[nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
|
||||
|
||||
begin += config[1]
|
||||
self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||
'W' if not i % 2 else 'SW', input_resolution // 4)
|
||||
for i in range(config[2])] + \
|
||||
[nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
|
||||
|
||||
begin += config[2]
|
||||
self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||
'W' if not i % 2 else 'SW', input_resolution // 8)
|
||||
for i in range(config[3])]
|
||||
|
||||
begin += config[3]
|
||||
self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \
|
||||
[ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||
'W' if not i % 2 else 'SW', input_resolution // 4)
|
||||
for i in range(config[4])]
|
||||
|
||||
begin += config[4]
|
||||
self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \
|
||||
[ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||
'W' if not i % 2 else 'SW', input_resolution // 2)
|
||||
for i in range(config[5])]
|
||||
|
||||
begin += config[5]
|
||||
self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \
|
||||
[ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
|
||||
'W' if not i % 2 else 'SW', input_resolution)
|
||||
for i in range(config[6])]
|
||||
|
||||
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
|
||||
|
||||
self.m_head = nn.Sequential(*self.m_head)
|
||||
self.m_down1 = nn.Sequential(*self.m_down1)
|
||||
self.m_down2 = nn.Sequential(*self.m_down2)
|
||||
self.m_down3 = nn.Sequential(*self.m_down3)
|
||||
self.m_body = nn.Sequential(*self.m_body)
|
||||
self.m_up3 = nn.Sequential(*self.m_up3)
|
||||
self.m_up2 = nn.Sequential(*self.m_up2)
|
||||
self.m_up1 = nn.Sequential(*self.m_up1)
|
||||
self.m_tail = nn.Sequential(*self.m_tail)
|
||||
# self.apply(self._init_weights)
|
||||
|
||||
def forward(self, x0):
|
||||
|
||||
h, w = x0.size()[-2:]
|
||||
paddingBottom = int(np.ceil(h / 64) * 64 - h)
|
||||
paddingRight = int(np.ceil(w / 64) * 64 - w)
|
||||
x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
|
||||
|
||||
x1 = self.m_head(x0)
|
||||
x2 = self.m_down1(x1)
|
||||
x3 = self.m_down2(x2)
|
||||
x4 = self.m_down3(x3)
|
||||
x = self.m_body(x4)
|
||||
x = self.m_up3(x + x4)
|
||||
x = self.m_up2(x + x3)
|
||||
x = self.m_up1(x + x2)
|
||||
x = self.m_tail(x + x1)
|
||||
|
||||
x = x[..., :h, :w]
|
||||
|
||||
return x
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
@ -5,245 +5,66 @@ import traceback
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch import einsum
|
||||
from torch.nn.functional import silu
|
||||
|
||||
from modules import prompt_parser
|
||||
import modules.textual_inversion.textual_inversion
|
||||
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
|
||||
from modules.shared import opts, device, cmd_opts
|
||||
from modules.sd_hijack_optimizations import invokeAI_mps_available
|
||||
|
||||
from ldm.util import default
|
||||
from einops import rearrange
|
||||
import ldm.modules.attention
|
||||
import ldm.modules.diffusionmodules.model
|
||||
|
||||
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
|
||||
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
|
||||
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
|
||||
|
||||
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
|
||||
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
def apply_optimizations():
|
||||
undo_optimizations()
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
del context, x
|
||||
ldm.modules.diffusionmodules.model.nonlinearity = silu
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
||||
for i in range(0, q.shape[0], 2):
|
||||
end = i + 2
|
||||
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
|
||||
s1 *= self.scale
|
||||
|
||||
s2 = s1.softmax(dim=-1)
|
||||
del s1
|
||||
|
||||
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
|
||||
del s2
|
||||
|
||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||
del r1
|
||||
|
||||
return self.to_out(r2)
|
||||
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (8, 6)):
|
||||
print("Applying xformers cross attention optimization.")
|
||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
|
||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
|
||||
elif cmd_opts.opt_split_attention_v1:
|
||||
print("Applying v1 cross attention optimization.")
|
||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
||||
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
|
||||
if not invokeAI_mps_available and shared.device.type == 'mps':
|
||||
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
|
||||
print("Applying v1 cross attention optimization.")
|
||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
||||
else:
|
||||
print("Applying cross attention optimization (InvokeAI).")
|
||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
|
||||
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
|
||||
print("Applying cross attention optimization (Doggettx).")
|
||||
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
|
||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
|
||||
|
||||
|
||||
# taken from https://github.com/Doggettx/stable-diffusion
|
||||
def split_cross_attention_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
def undo_optimizations():
|
||||
from modules.hypernetworks import hypernetwork
|
||||
|
||||
q_in = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k_in = self.to_k(context) * self.scale
|
||||
v_in = self.to_v(context)
|
||||
del context, x
|
||||
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
|
||||
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
|
||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||
del q_in, k_in, v_in
|
||||
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
def get_target_prompt_token_count(token_count):
|
||||
return math.ceil(max(token_count, 1) / 75) * 75
|
||||
|
||||
stats = torch.cuda.memory_stats(q.device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
||||
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
||||
|
||||
if steps > 64:
|
||||
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
||||
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
||||
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
|
||||
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
|
||||
|
||||
s2 = s1.softmax(dim=-1, dtype=q.dtype)
|
||||
del s1
|
||||
|
||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
||||
del s2
|
||||
|
||||
del q, k, v
|
||||
|
||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||
del r1
|
||||
|
||||
return self.to_out(r2)
|
||||
|
||||
def nonlinearity_hijack(x):
|
||||
# swish
|
||||
t = torch.sigmoid(x)
|
||||
x *= t
|
||||
del t
|
||||
|
||||
return x
|
||||
|
||||
def cross_attention_attnblock_forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q1 = self.q(h_)
|
||||
k1 = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q1.shape
|
||||
|
||||
q2 = q1.reshape(b, c, h*w)
|
||||
del q1
|
||||
|
||||
q = q2.permute(0, 2, 1) # b,hw,c
|
||||
del q2
|
||||
|
||||
k = k1.reshape(b, c, h*w) # b,c,hw
|
||||
del k1
|
||||
|
||||
h_ = torch.zeros_like(k, device=q.device)
|
||||
|
||||
stats = torch.cuda.memory_stats(q.device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||
mem_required = tensor_size * 2.5
|
||||
steps = 1
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
|
||||
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w2 = w1 * (int(c)**(-0.5))
|
||||
del w1
|
||||
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
|
||||
del w2
|
||||
|
||||
# attend to values
|
||||
v1 = v.reshape(b, c, h*w)
|
||||
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||
del w3
|
||||
|
||||
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
del v1, w4
|
||||
|
||||
h2 = h_.reshape(b, c, h, w)
|
||||
del h_
|
||||
|
||||
h3 = self.proj_out(h2)
|
||||
del h2
|
||||
|
||||
h3 += x
|
||||
|
||||
return h3
|
||||
|
||||
class StableDiffusionModelHijack:
|
||||
ids_lookup = {}
|
||||
word_embeddings = {}
|
||||
word_embeddings_checksums = {}
|
||||
fixes = None
|
||||
comments = []
|
||||
dir_mtime = None
|
||||
layers = None
|
||||
circular_enabled = False
|
||||
clip = None
|
||||
|
||||
def load_textual_inversion_embeddings(self, dirname, model):
|
||||
mt = os.path.getmtime(dirname)
|
||||
if self.dir_mtime is not None and mt <= self.dir_mtime:
|
||||
return
|
||||
|
||||
self.dir_mtime = mt
|
||||
self.ids_lookup.clear()
|
||||
self.word_embeddings.clear()
|
||||
|
||||
tokenizer = model.cond_stage_model.tokenizer
|
||||
|
||||
def const_hash(a):
|
||||
r = 0
|
||||
for v in a:
|
||||
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
|
||||
return r
|
||||
|
||||
def process_file(path, filename):
|
||||
name = os.path.splitext(filename)[0]
|
||||
|
||||
data = torch.load(path, map_location="cpu")
|
||||
|
||||
# textual inversion embeddings
|
||||
if 'string_to_param' in data:
|
||||
param_dict = data['string_to_param']
|
||||
if hasattr(param_dict, '_parameters'):
|
||||
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
|
||||
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
||||
emb = next(iter(param_dict.items()))[1]
|
||||
# diffuser concepts
|
||||
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
|
||||
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
||||
|
||||
emb = next(iter(data.values()))
|
||||
if len(emb.shape) == 1:
|
||||
emb = emb.unsqueeze(0)
|
||||
|
||||
self.word_embeddings[name] = emb.detach().to(device)
|
||||
self.word_embeddings_checksums[name] = f'{const_hash(emb.reshape(-1)*100)&0xffff:04x}'
|
||||
|
||||
ids = tokenizer([name], add_special_tokens=False)['input_ids'][0]
|
||||
|
||||
first_id = ids[0]
|
||||
if first_id not in self.ids_lookup:
|
||||
self.ids_lookup[first_id] = []
|
||||
self.ids_lookup[first_id].append((ids, name))
|
||||
|
||||
for fn in os.listdir(dirname):
|
||||
try:
|
||||
fullfn = os.path.join(dirname, fn)
|
||||
|
||||
if os.stat(fullfn).st_size == 0:
|
||||
continue
|
||||
|
||||
process_file(fullfn, fn)
|
||||
except Exception:
|
||||
print(f"Error loading emedding {fn}:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
continue
|
||||
|
||||
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
|
||||
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
|
||||
|
||||
def hijack(self, m):
|
||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||
@ -253,12 +74,7 @@ class StableDiffusionModelHijack:
|
||||
|
||||
self.clip = m.cond_stage_model
|
||||
|
||||
if cmd_opts.opt_split_attention_v1:
|
||||
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
|
||||
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
|
||||
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
|
||||
ldm.modules.diffusionmodules.model.nonlinearity = nonlinearity_hijack
|
||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
|
||||
apply_optimizations()
|
||||
|
||||
def flatten(el):
|
||||
flattened = [flatten(children) for children in el.children()]
|
||||
@ -286,21 +102,24 @@ class StableDiffusionModelHijack:
|
||||
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
|
||||
layer.padding_mode = 'circular' if enable else 'zeros'
|
||||
|
||||
def clear_comments(self):
|
||||
self.comments = []
|
||||
|
||||
def tokenize(self, text):
|
||||
max_length = self.clip.max_length - 2
|
||||
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
|
||||
return remade_batch_tokens[0], token_count, max_length
|
||||
return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
|
||||
|
||||
|
||||
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__()
|
||||
self.wrapped = wrapped
|
||||
self.hijack = hijack
|
||||
self.hijack: StableDiffusionModelHijack = hijack
|
||||
self.tokenizer = wrapped.tokenizer
|
||||
self.max_length = wrapped.max_length
|
||||
self.token_mults = {}
|
||||
|
||||
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
|
||||
|
||||
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
||||
for text, ident in tokens_with_parens:
|
||||
mult = 1.0
|
||||
@ -317,11 +136,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
if mult != 1.0:
|
||||
self.token_mults[ident] = mult
|
||||
|
||||
|
||||
def tokenize_line(self, line, used_custom_terms, hijack_comments):
|
||||
id_start = self.wrapped.tokenizer.bos_token_id
|
||||
id_end = self.wrapped.tokenizer.eos_token_id
|
||||
maxlen = self.wrapped.max_length
|
||||
|
||||
if opts.enable_emphasis:
|
||||
parsed = prompt_parser.parse_prompt_attention(line)
|
||||
@ -333,48 +149,53 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
fixes = []
|
||||
remade_tokens = []
|
||||
multipliers = []
|
||||
last_comma = -1
|
||||
|
||||
for tokens, (text, weight) in zip(tokenized, parsed):
|
||||
i = 0
|
||||
while i < len(tokens):
|
||||
token = tokens[i]
|
||||
|
||||
possible_matches = self.hijack.ids_lookup.get(token, None)
|
||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||
|
||||
if possible_matches is None:
|
||||
if token == self.comma_token:
|
||||
last_comma = len(remade_tokens)
|
||||
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
|
||||
last_comma += 1
|
||||
reloc_tokens = remade_tokens[last_comma:]
|
||||
reloc_mults = multipliers[last_comma:]
|
||||
|
||||
remade_tokens = remade_tokens[:last_comma]
|
||||
length = len(remade_tokens)
|
||||
|
||||
rem = int(math.ceil(length / 75)) * 75 - length
|
||||
remade_tokens += [id_end] * rem + reloc_tokens
|
||||
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
|
||||
|
||||
if embedding is None:
|
||||
remade_tokens.append(token)
|
||||
multipliers.append(weight)
|
||||
i += 1
|
||||
else:
|
||||
found = False
|
||||
for ids, word in possible_matches:
|
||||
if tokens[i:i + len(ids)] == ids:
|
||||
emb_len = int(self.hijack.word_embeddings[word].shape[0])
|
||||
fixes.append((len(remade_tokens), word))
|
||||
remade_tokens += [0] * emb_len
|
||||
multipliers += [weight] * emb_len
|
||||
i += len(ids) - 1
|
||||
found = True
|
||||
used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word]))
|
||||
break
|
||||
|
||||
if not found:
|
||||
remade_tokens.append(token)
|
||||
multipliers.append(weight)
|
||||
i += 1
|
||||
|
||||
if len(remade_tokens) > maxlen - 2:
|
||||
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
||||
ovf = remade_tokens[maxlen - 2:]
|
||||
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
||||
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
||||
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
emb_len = int(embedding.vec.shape[0])
|
||||
iteration = len(remade_tokens) // 75
|
||||
if (len(remade_tokens) + emb_len) // 75 != iteration:
|
||||
rem = (75 * (iteration + 1) - len(remade_tokens))
|
||||
remade_tokens += [id_end] * rem
|
||||
multipliers += [1.0] * rem
|
||||
iteration += 1
|
||||
fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
|
||||
remade_tokens += [0] * emb_len
|
||||
multipliers += [weight] * emb_len
|
||||
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||
i += embedding_length_in_tokens
|
||||
|
||||
token_count = len(remade_tokens)
|
||||
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
||||
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
|
||||
prompt_target_length = get_target_prompt_token_count(token_count)
|
||||
tokens_to_add = prompt_target_length - len(remade_tokens)
|
||||
|
||||
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
|
||||
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
||||
remade_tokens = remade_tokens + [id_end] * tokens_to_add
|
||||
multipliers = multipliers + [1.0] * tokens_to_add
|
||||
|
||||
return remade_tokens, fixes, multipliers, token_count
|
||||
|
||||
@ -391,7 +212,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
if line in cache:
|
||||
remade_tokens, fixes, multipliers = cache[line]
|
||||
else:
|
||||
remade_tokens, fixes, multipliers, token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
|
||||
remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
|
||||
token_count = max(current_token_count, token_count)
|
||||
|
||||
cache[line] = (remade_tokens, fixes, multipliers)
|
||||
|
||||
@ -405,7 +227,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
def process_text_old(self, text):
|
||||
id_start = self.wrapped.tokenizer.bos_token_id
|
||||
id_end = self.wrapped.tokenizer.eos_token_id
|
||||
maxlen = self.wrapped.max_length
|
||||
maxlen = self.wrapped.max_length # you get to stay at 77
|
||||
used_custom_terms = []
|
||||
remade_batch_tokens = []
|
||||
overflowing_words = []
|
||||
@ -431,32 +253,23 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
while i < len(tokens):
|
||||
token = tokens[i]
|
||||
|
||||
possible_matches = self.hijack.ids_lookup.get(token, None)
|
||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||
|
||||
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
|
||||
if mult_change is not None:
|
||||
mult *= mult_change
|
||||
elif possible_matches is None:
|
||||
i += 1
|
||||
elif embedding is None:
|
||||
remade_tokens.append(token)
|
||||
multipliers.append(mult)
|
||||
i += 1
|
||||
else:
|
||||
found = False
|
||||
for ids, word in possible_matches:
|
||||
if tokens[i:i+len(ids)] == ids:
|
||||
emb_len = int(self.hijack.word_embeddings[word].shape[0])
|
||||
fixes.append((len(remade_tokens), word))
|
||||
remade_tokens += [0] * emb_len
|
||||
multipliers += [mult] * emb_len
|
||||
i += len(ids) - 1
|
||||
found = True
|
||||
used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word]))
|
||||
break
|
||||
|
||||
if not found:
|
||||
remade_tokens.append(token)
|
||||
multipliers.append(mult)
|
||||
|
||||
i += 1
|
||||
emb_len = int(embedding.vec.shape[0])
|
||||
fixes.append((len(remade_tokens), embedding))
|
||||
remade_tokens += [0] * emb_len
|
||||
multipliers += [mult] * emb_len
|
||||
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||
i += embedding_length_in_tokens
|
||||
|
||||
if len(remade_tokens) > maxlen - 2:
|
||||
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
||||
@ -464,6 +277,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
||||
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
||||
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
|
||||
token_count = len(remade_tokens)
|
||||
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
||||
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
|
||||
@ -476,27 +290,74 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
hijack_fixes.append(fixes)
|
||||
batch_multipliers.append(multipliers)
|
||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||
|
||||
|
||||
def forward(self, text):
|
||||
|
||||
if opts.use_old_emphasis_implementation:
|
||||
use_old = opts.use_old_emphasis_implementation
|
||||
if use_old:
|
||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
|
||||
else:
|
||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
|
||||
|
||||
|
||||
self.hijack.fixes = hijack_fixes
|
||||
self.hijack.comments = hijack_comments
|
||||
self.hijack.comments += hijack_comments
|
||||
|
||||
if len(used_custom_terms) > 0:
|
||||
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
||||
|
||||
if use_old:
|
||||
self.hijack.fixes = hijack_fixes
|
||||
return self.process_tokens(remade_batch_tokens, batch_multipliers)
|
||||
|
||||
z = None
|
||||
i = 0
|
||||
while max(map(len, remade_batch_tokens)) != 0:
|
||||
rem_tokens = [x[75:] for x in remade_batch_tokens]
|
||||
rem_multipliers = [x[75:] for x in batch_multipliers]
|
||||
|
||||
self.hijack.fixes = []
|
||||
for unfiltered in hijack_fixes:
|
||||
fixes = []
|
||||
for fix in unfiltered:
|
||||
if fix[0] == i:
|
||||
fixes.append(fix[1])
|
||||
self.hijack.fixes.append(fixes)
|
||||
|
||||
tokens = []
|
||||
multipliers = []
|
||||
for j in range(len(remade_batch_tokens)):
|
||||
if len(remade_batch_tokens[j]) > 0:
|
||||
tokens.append(remade_batch_tokens[j][:75])
|
||||
multipliers.append(batch_multipliers[j][:75])
|
||||
else:
|
||||
tokens.append([self.wrapped.tokenizer.eos_token_id] * 75)
|
||||
multipliers.append([1.0] * 75)
|
||||
|
||||
z1 = self.process_tokens(tokens, multipliers)
|
||||
z = z1 if z is None else torch.cat((z, z1), axis=-2)
|
||||
|
||||
remade_batch_tokens = rem_tokens
|
||||
batch_multipliers = rem_multipliers
|
||||
i += 1
|
||||
|
||||
return z
|
||||
|
||||
|
||||
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
||||
if not opts.use_old_emphasis_implementation:
|
||||
remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
|
||||
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
|
||||
|
||||
tokens = torch.asarray(remade_batch_tokens).to(device)
|
||||
outputs = self.wrapped.transformer(input_ids=tokens)
|
||||
z = outputs.last_hidden_state
|
||||
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
||||
|
||||
if opts.CLIP_stop_at_last_layers > 1:
|
||||
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
|
||||
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
||||
else:
|
||||
z = outputs.last_hidden_state
|
||||
|
||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||
batch_multipliers = torch.asarray(batch_multipliers).to(device)
|
||||
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
|
||||
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(device)
|
||||
original_mean = z.mean()
|
||||
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||
new_mean = z.mean()
|
||||
@ -517,14 +378,19 @@ class EmbeddingsWithFixes(torch.nn.Module):
|
||||
|
||||
inputs_embeds = self.wrapped(input_ids)
|
||||
|
||||
if batch_fixes is not None:
|
||||
for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
||||
for offset, word in fixes:
|
||||
emb = self.embeddings.word_embeddings[word]
|
||||
emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
|
||||
tensor[offset+1:offset+1+emb_len] = self.embeddings.word_embeddings[word][0:emb_len]
|
||||
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
|
||||
return inputs_embeds
|
||||
|
||||
return inputs_embeds
|
||||
vecs = []
|
||||
for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
||||
for offset, embedding in fixes:
|
||||
emb = embedding.vec
|
||||
emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
|
||||
tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]])
|
||||
|
||||
vecs.append(tensor)
|
||||
|
||||
return torch.stack(vecs)
|
||||
|
||||
|
||||
def add_circular_option_to_conv_2d():
|
||||
|
306
modules/sd_hijack_optimizations.py
Normal file
306
modules/sd_hijack_optimizations.py
Normal file
@ -0,0 +1,306 @@
|
||||
import math
|
||||
import sys
|
||||
import traceback
|
||||
import importlib
|
||||
|
||||
import torch
|
||||
from torch import einsum
|
||||
|
||||
from ldm.util import default
|
||||
from einops import rearrange
|
||||
|
||||
from modules import shared
|
||||
from modules.hypernetworks import hypernetwork
|
||||
|
||||
|
||||
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
||||
try:
|
||||
import xformers.ops
|
||||
shared.xformers_available = True
|
||||
except Exception:
|
||||
print("Cannot import xformers", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
|
||||
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
|
||||
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q_in = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||
k_in = self.to_k(context_k)
|
||||
v_in = self.to_v(context_v)
|
||||
del context, context_k, context_v, x
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||
del q_in, k_in, v_in
|
||||
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
||||
for i in range(0, q.shape[0], 2):
|
||||
end = i + 2
|
||||
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
|
||||
s1 *= self.scale
|
||||
|
||||
s2 = s1.softmax(dim=-1)
|
||||
del s1
|
||||
|
||||
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
|
||||
del s2
|
||||
del q, k, v
|
||||
|
||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||
del r1
|
||||
|
||||
return self.to_out(r2)
|
||||
|
||||
|
||||
# taken from https://github.com/Doggettx/stable-diffusion and modified
|
||||
def split_cross_attention_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q_in = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||
k_in = self.to_k(context_k)
|
||||
v_in = self.to_v(context_v)
|
||||
|
||||
k_in *= self.scale
|
||||
|
||||
del context, x
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||
del q_in, k_in, v_in
|
||||
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
|
||||
stats = torch.cuda.memory_stats(q.device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
||||
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
||||
|
||||
if steps > 64:
|
||||
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
||||
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
||||
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
|
||||
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
|
||||
|
||||
s2 = s1.softmax(dim=-1, dtype=q.dtype)
|
||||
del s1
|
||||
|
||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
||||
del s2
|
||||
|
||||
del q, k, v
|
||||
|
||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||
del r1
|
||||
|
||||
return self.to_out(r2)
|
||||
|
||||
|
||||
def check_for_psutil():
|
||||
try:
|
||||
spec = importlib.util.find_spec('psutil')
|
||||
return spec is not None
|
||||
except ModuleNotFoundError:
|
||||
return False
|
||||
|
||||
invokeAI_mps_available = check_for_psutil()
|
||||
|
||||
# -- Taken from https://github.com/invoke-ai/InvokeAI --
|
||||
if invokeAI_mps_available:
|
||||
import psutil
|
||||
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
||||
|
||||
def einsum_op_compvis(q, k, v):
|
||||
s = einsum('b i d, b j d -> b i j', q, k)
|
||||
s = s.softmax(dim=-1, dtype=s.dtype)
|
||||
return einsum('b i j, b j d -> b i d', s, v)
|
||||
|
||||
def einsum_op_slice_0(q, k, v, slice_size):
|
||||
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
for i in range(0, q.shape[0], slice_size):
|
||||
end = i + slice_size
|
||||
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
|
||||
return r
|
||||
|
||||
def einsum_op_slice_1(q, k, v, slice_size):
|
||||
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
|
||||
return r
|
||||
|
||||
def einsum_op_mps_v1(q, k, v):
|
||||
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
||||
return einsum_op_compvis(q, k, v)
|
||||
else:
|
||||
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||
return einsum_op_slice_1(q, k, v, slice_size)
|
||||
|
||||
def einsum_op_mps_v2(q, k, v):
|
||||
if mem_total_gb > 8 and q.shape[1] <= 4096:
|
||||
return einsum_op_compvis(q, k, v)
|
||||
else:
|
||||
return einsum_op_slice_0(q, k, v, 1)
|
||||
|
||||
def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
|
||||
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
|
||||
if size_mb <= max_tensor_mb:
|
||||
return einsum_op_compvis(q, k, v)
|
||||
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
|
||||
if div <= q.shape[0]:
|
||||
return einsum_op_slice_0(q, k, v, q.shape[0] // div)
|
||||
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
|
||||
|
||||
def einsum_op_cuda(q, k, v):
|
||||
stats = torch.cuda.memory_stats(q.device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
# Divide factor of safety as there's copying and fragmentation
|
||||
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
|
||||
|
||||
def einsum_op(q, k, v):
|
||||
if q.device.type == 'cuda':
|
||||
return einsum_op_cuda(q, k, v)
|
||||
|
||||
if q.device.type == 'mps':
|
||||
if mem_total_gb >= 32:
|
||||
return einsum_op_mps_v1(q, k, v)
|
||||
return einsum_op_mps_v2(q, k, v)
|
||||
|
||||
# Smaller slices are faster due to L2/L3/SLC caches.
|
||||
# Tested on i7 with 8MB L3 cache.
|
||||
return einsum_op_tensor_mem(q, k, v, 32)
|
||||
|
||||
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||
k = self.to_k(context_k) * self.scale
|
||||
v = self.to_v(context_v)
|
||||
del context, context_k, context_v, x
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
r = einsum_op(q, k, v)
|
||||
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
|
||||
|
||||
# -- End of code from https://github.com/invoke-ai/InvokeAI --
|
||||
|
||||
def xformers_attention_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
q_in = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||
k_in = self.to_k(context_k)
|
||||
v_in = self.to_v(context_v)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
|
||||
del q_in, k_in, v_in
|
||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
||||
|
||||
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
|
||||
return self.to_out(out)
|
||||
|
||||
def cross_attention_attnblock_forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q1 = self.q(h_)
|
||||
k1 = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q1.shape
|
||||
|
||||
q2 = q1.reshape(b, c, h*w)
|
||||
del q1
|
||||
|
||||
q = q2.permute(0, 2, 1) # b,hw,c
|
||||
del q2
|
||||
|
||||
k = k1.reshape(b, c, h*w) # b,c,hw
|
||||
del k1
|
||||
|
||||
h_ = torch.zeros_like(k, device=q.device)
|
||||
|
||||
stats = torch.cuda.memory_stats(q.device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||
mem_required = tensor_size * 2.5
|
||||
steps = 1
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
|
||||
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w2 = w1 * (int(c)**(-0.5))
|
||||
del w1
|
||||
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
|
||||
del w2
|
||||
|
||||
# attend to values
|
||||
v1 = v.reshape(b, c, h*w)
|
||||
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||
del w3
|
||||
|
||||
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
del v1, w4
|
||||
|
||||
h2 = h_.reshape(b, c, h, w)
|
||||
del h_
|
||||
|
||||
h3 = self.proj_out(h2)
|
||||
del h2
|
||||
|
||||
h3 += x
|
||||
|
||||
return h3
|
||||
|
||||
def xformers_attnblock_forward(self, x):
|
||||
try:
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q1 = self.q(h_).contiguous()
|
||||
k1 = self.k(h_).contiguous()
|
||||
v = self.v(h_).contiguous()
|
||||
out = xformers.ops.memory_efficient_attention(q1, k1, v)
|
||||
out = self.proj_out(out)
|
||||
return x + out
|
||||
except NotImplementedError:
|
||||
return cross_attention_attnblock_forward(self, x)
|
@ -1,24 +1,21 @@
|
||||
import glob
|
||||
import collections
|
||||
import os.path
|
||||
import sys
|
||||
from collections import namedtuple
|
||||
import torch
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
from modules import shared, modelloader
|
||||
from modules import shared, modelloader, devices
|
||||
from modules.paths import models_path
|
||||
|
||||
model_dir = "Stable-diffusion"
|
||||
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
||||
model_name = "sd-v1-4.ckpt"
|
||||
model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1"
|
||||
user_dir = None
|
||||
|
||||
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
|
||||
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
|
||||
checkpoints_list = {}
|
||||
checkpoints_loaded = collections.OrderedDict()
|
||||
|
||||
try:
|
||||
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
||||
@ -30,12 +27,10 @@ except Exception:
|
||||
pass
|
||||
|
||||
|
||||
def setup_model(dirname):
|
||||
global user_dir
|
||||
user_dir = dirname
|
||||
def setup_model():
|
||||
if not os.path.exists(model_path):
|
||||
os.makedirs(model_path)
|
||||
checkpoints_list.clear()
|
||||
|
||||
list_models()
|
||||
|
||||
|
||||
@ -45,13 +40,13 @@ def checkpoint_tiles():
|
||||
|
||||
def list_models():
|
||||
checkpoints_list.clear()
|
||||
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=user_dir, ext_filter=[".ckpt"], download_name=model_name)
|
||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])
|
||||
|
||||
def modeltitle(path, shorthash):
|
||||
abspath = os.path.abspath(path)
|
||||
|
||||
if user_dir is not None and abspath.startswith(user_dir):
|
||||
name = abspath.replace(user_dir, '')
|
||||
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
|
||||
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
|
||||
elif abspath.startswith(model_path):
|
||||
name = abspath.replace(model_path, '')
|
||||
else:
|
||||
@ -68,14 +63,20 @@ def list_models():
|
||||
if os.path.exists(cmd_ckpt):
|
||||
h = model_hash(cmd_ckpt)
|
||||
title, short_model_name = modeltitle(cmd_ckpt, h)
|
||||
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
|
||||
shared.opts.sd_model_checkpoint = title
|
||||
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
|
||||
shared.opts.data['sd_model_checkpoint'] = title
|
||||
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
|
||||
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
|
||||
for filename in model_list:
|
||||
h = model_hash(filename)
|
||||
title, short_model_name = modeltitle(filename, h)
|
||||
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
|
||||
|
||||
basename, _ = os.path.splitext(filename)
|
||||
config = basename + ".yaml"
|
||||
if not os.path.exists(config):
|
||||
config = shared.cmd_opts.config
|
||||
|
||||
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)
|
||||
|
||||
|
||||
def get_closet_checkpoint_match(searchString):
|
||||
@ -106,8 +107,11 @@ def select_checkpoint():
|
||||
|
||||
if len(checkpoints_list) == 0:
|
||||
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
||||
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
||||
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
||||
if shared.cmd_opts.ckpt is not None:
|
||||
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
||||
print(f" - directory {model_path}", file=sys.stderr)
|
||||
if shared.cmd_opts.ckpt_dir is not None:
|
||||
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
||||
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
||||
exit(1)
|
||||
|
||||
@ -118,33 +122,72 @@ def select_checkpoint():
|
||||
return checkpoint_info
|
||||
|
||||
|
||||
def load_model_weights(model, checkpoint_file, sd_model_hash):
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
def get_state_dict_from_checkpoint(pl_sd):
|
||||
if "state_dict" in pl_sd:
|
||||
return pl_sd["state_dict"]
|
||||
|
||||
pl_sd = torch.load(checkpoint_file, map_location="cpu")
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
return pl_sd
|
||||
|
||||
model.load_state_dict(sd, strict=False)
|
||||
|
||||
if shared.cmd_opts.opt_channelslast:
|
||||
model.to(memory_format=torch.channels_last)
|
||||
def load_model_weights(model, checkpoint_info):
|
||||
checkpoint_file = checkpoint_info.filename
|
||||
sd_model_hash = checkpoint_info.hash
|
||||
|
||||
if not shared.cmd_opts.no_half:
|
||||
model.half()
|
||||
if checkpoint_info not in checkpoints_loaded:
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
|
||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
|
||||
sd = get_state_dict_from_checkpoint(pl_sd)
|
||||
model.load_state_dict(sd, strict=False)
|
||||
|
||||
if shared.cmd_opts.opt_channelslast:
|
||||
model.to(memory_format=torch.channels_last)
|
||||
|
||||
if not shared.cmd_opts.no_half:
|
||||
model.half()
|
||||
|
||||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||
|
||||
vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"
|
||||
|
||||
if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
|
||||
vae_file = shared.cmd_opts.vae_path
|
||||
|
||||
if os.path.exists(vae_file):
|
||||
print(f"Loading VAE weights from: {vae_file}")
|
||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
|
||||
model.first_stage_model.load_state_dict(vae_dict)
|
||||
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
|
||||
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
|
||||
checkpoints_loaded.popitem(last=False) # LRU
|
||||
else:
|
||||
print(f"Loading weights [{sd_model_hash}] from cache")
|
||||
checkpoints_loaded.move_to_end(checkpoint_info)
|
||||
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||
|
||||
model.sd_model_hash = sd_model_hash
|
||||
model.sd_model_checkpint = checkpoint_file
|
||||
model.sd_model_checkpoint = checkpoint_file
|
||||
model.sd_checkpoint_info = checkpoint_info
|
||||
|
||||
|
||||
def load_model():
|
||||
from modules import lowvram, sd_hijack
|
||||
checkpoint_info = select_checkpoint()
|
||||
|
||||
sd_config = OmegaConf.load(shared.cmd_opts.config)
|
||||
if checkpoint_info.config != shared.cmd_opts.config:
|
||||
print(f"Loading config from: {checkpoint_info.config}")
|
||||
|
||||
sd_config = OmegaConf.load(checkpoint_info.config)
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
|
||||
load_model_weights(sd_model, checkpoint_info)
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
||||
@ -163,9 +206,14 @@ def reload_model_weights(sd_model, info=None):
|
||||
from modules import lowvram, devices, sd_hijack
|
||||
checkpoint_info = info or select_checkpoint()
|
||||
|
||||
if sd_model.sd_model_checkpint == checkpoint_info.filename:
|
||||
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
|
||||
return
|
||||
|
||||
if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
|
||||
checkpoints_loaded.clear()
|
||||
shared.sd_model = load_model()
|
||||
return shared.sd_model
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
lowvram.send_everything_to_cpu()
|
||||
else:
|
||||
@ -173,7 +221,7 @@ def reload_model_weights(sd_model, info=None):
|
||||
|
||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||
|
||||
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
|
||||
load_model_weights(sd_model, checkpoint_info)
|
||||
|
||||
sd_hijack.model_hijack.hijack(sd_model)
|
||||
|
||||
|
@ -7,37 +7,63 @@ import inspect
|
||||
import k_diffusion.sampling
|
||||
import ldm.models.diffusion.ddim
|
||||
import ldm.models.diffusion.plms
|
||||
from modules import prompt_parser
|
||||
from modules import prompt_parser, devices, processing
|
||||
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
|
||||
|
||||
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases'])
|
||||
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
|
||||
|
||||
samplers_k_diffusion = [
|
||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a']),
|
||||
('Euler', 'sample_euler', ['k_euler']),
|
||||
('LMS', 'sample_lms', ['k_lms']),
|
||||
('Heun', 'sample_heun', ['k_heun']),
|
||||
('DPM2', 'sample_dpm_2', ['k_dpm_2']),
|
||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']),
|
||||
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']),
|
||||
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']),
|
||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
|
||||
('Euler', 'sample_euler', ['k_euler'], {}),
|
||||
('LMS', 'sample_lms', ['k_lms'], {}),
|
||||
('Heun', 'sample_heun', ['k_heun'], {}),
|
||||
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
|
||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
|
||||
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
|
||||
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
|
||||
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
||||
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
|
||||
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
|
||||
]
|
||||
|
||||
samplers_data_k_diffusion = [
|
||||
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases)
|
||||
for label, funcname, aliases in samplers_k_diffusion
|
||||
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
||||
for label, funcname, aliases, options in samplers_k_diffusion
|
||||
if hasattr(k_diffusion.sampling, funcname)
|
||||
]
|
||||
|
||||
samplers = [
|
||||
all_samplers = [
|
||||
*samplers_data_k_diffusion,
|
||||
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []),
|
||||
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []),
|
||||
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
|
||||
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
|
||||
]
|
||||
samplers_for_img2img = [x for x in samplers if x.name not in ['PLMS', 'DPM fast', 'DPM adaptive']]
|
||||
|
||||
samplers = []
|
||||
samplers_for_img2img = []
|
||||
|
||||
|
||||
def create_sampler_with_index(list_of_configs, index, model):
|
||||
config = list_of_configs[index]
|
||||
sampler = config.constructor(model)
|
||||
sampler.config = config
|
||||
|
||||
return sampler
|
||||
|
||||
|
||||
def set_samplers():
|
||||
global samplers, samplers_for_img2img
|
||||
|
||||
hidden = set(opts.hide_samplers)
|
||||
hidden_img2img = set(opts.hide_samplers + ['PLMS'])
|
||||
|
||||
samplers = [x for x in all_samplers if x.name not in hidden]
|
||||
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
|
||||
|
||||
|
||||
set_samplers()
|
||||
|
||||
sampler_extra_params = {
|
||||
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
||||
@ -57,7 +83,7 @@ def setup_img2img_steps(p, steps=None):
|
||||
|
||||
|
||||
def sample_to_image(samples):
|
||||
x_sample = shared.sd_model.decode_first_stage(samples[0:1].type(shared.sd_model.dtype))[0]
|
||||
x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0]
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
@ -77,8 +103,10 @@ def extended_tdqm(sequence, *args, desc=None, **kwargs):
|
||||
state.sampling_steps = len(sequence)
|
||||
state.sampling_step = 0
|
||||
|
||||
for x in tqdm.tqdm(sequence, *args, desc=state.job, file=shared.progress_print_out, **kwargs):
|
||||
if state.interrupted:
|
||||
seq = sequence if cmd_opts.disable_console_progressbars else tqdm.tqdm(sequence, *args, desc=state.job, file=shared.progress_print_out, **kwargs)
|
||||
|
||||
for x in seq:
|
||||
if state.interrupted or state.skipped:
|
||||
break
|
||||
|
||||
yield x
|
||||
@ -102,14 +130,28 @@ class VanillaStableDiffusionSampler:
|
||||
self.step = 0
|
||||
self.eta = None
|
||||
self.default_eta = 0.0
|
||||
self.config = None
|
||||
|
||||
def number_of_needed_noises(self, p):
|
||||
return 0
|
||||
|
||||
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
|
||||
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
|
||||
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
|
||||
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
|
||||
|
||||
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
|
||||
cond = tensor
|
||||
|
||||
# for DDIM, shapes must match, we can't just process cond and uncond independently;
|
||||
# filling unconditional_conditioning with repeats of the last vector to match length is
|
||||
# not 100% correct but should work well enough
|
||||
if unconditional_conditioning.shape[1] < cond.shape[1]:
|
||||
last_vector = unconditional_conditioning[:, -1:]
|
||||
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
|
||||
unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
|
||||
elif unconditional_conditioning.shape[1] > cond.shape[1]:
|
||||
unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
|
||||
|
||||
if self.mask is not None:
|
||||
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
|
||||
x_dec = img_orig * self.mask + self.nmask * x_dec
|
||||
@ -125,7 +167,7 @@ class VanillaStableDiffusionSampler:
|
||||
return res
|
||||
|
||||
def initialize(self, p):
|
||||
self.eta = p.eta or opts.eta_ddim
|
||||
self.eta = p.eta if p.eta is not None else opts.eta_ddim
|
||||
|
||||
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
|
||||
if hasattr(self.sampler, fieldname):
|
||||
@ -139,7 +181,7 @@ class VanillaStableDiffusionSampler:
|
||||
|
||||
self.initialize(p)
|
||||
|
||||
# existing code fails with cetain step counts, like 9
|
||||
# existing code fails with certain step counts, like 9
|
||||
try:
|
||||
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
|
||||
except Exception:
|
||||
@ -162,7 +204,7 @@ class VanillaStableDiffusionSampler:
|
||||
|
||||
steps = steps or p.steps
|
||||
|
||||
# existing code fails with cetin step counts, like 9
|
||||
# existing code fails with certain step counts, like 9
|
||||
try:
|
||||
samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)
|
||||
except Exception:
|
||||
@ -181,19 +223,42 @@ class CFGDenoiser(torch.nn.Module):
|
||||
self.step = 0
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
|
||||
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
|
||||
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
|
||||
|
||||
if shared.batch_cond_uncond:
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
||||
denoised = uncond + (cond - uncond) * cond_scale
|
||||
batch_size = len(conds_list)
|
||||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||
|
||||
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
||||
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
|
||||
|
||||
if tensor.shape[1] == uncond.shape[1]:
|
||||
cond_in = torch.cat([tensor, uncond])
|
||||
|
||||
if shared.batch_cond_uncond:
|
||||
x_out = self.inner_model(x_in, sigma_in, cond=cond_in)
|
||||
else:
|
||||
x_out = torch.zeros_like(x_in)
|
||||
for batch_offset in range(0, x_out.shape[0], batch_size):
|
||||
a = batch_offset
|
||||
b = a + batch_size
|
||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b])
|
||||
else:
|
||||
uncond = self.inner_model(x, sigma, cond=uncond)
|
||||
cond = self.inner_model(x, sigma, cond=cond)
|
||||
denoised = uncond + (cond - uncond) * cond_scale
|
||||
x_out = torch.zeros_like(x_in)
|
||||
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
|
||||
for batch_offset in range(0, tensor.shape[0], batch_size):
|
||||
a = batch_offset
|
||||
b = min(a + batch_size, tensor.shape[0])
|
||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=tensor[a:b])
|
||||
|
||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=uncond)
|
||||
|
||||
denoised_uncond = x_out[-uncond.shape[0]:]
|
||||
denoised = torch.clone(denoised_uncond)
|
||||
|
||||
for i, conds in enumerate(conds_list):
|
||||
for cond_index, weight in conds:
|
||||
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
|
||||
|
||||
if self.mask is not None:
|
||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||
@ -207,8 +272,10 @@ def extended_trange(sampler, count, *args, **kwargs):
|
||||
state.sampling_steps = count
|
||||
state.sampling_step = 0
|
||||
|
||||
for x in tqdm.trange(count, *args, desc=state.job, file=shared.progress_print_out, **kwargs):
|
||||
if state.interrupted:
|
||||
seq = range(count) if cmd_opts.disable_console_progressbars else tqdm.trange(count, *args, desc=state.job, file=shared.progress_print_out, **kwargs)
|
||||
|
||||
for x in seq:
|
||||
if state.interrupted or state.skipped:
|
||||
break
|
||||
|
||||
if sampler.stop_at is not None and x > sampler.stop_at:
|
||||
@ -246,6 +313,7 @@ class KDiffusionSampler:
|
||||
self.stop_at = None
|
||||
self.eta = None
|
||||
self.default_eta = 1.0
|
||||
self.config = None
|
||||
|
||||
def callback_state(self, d):
|
||||
store_latent(d["denoised"])
|
||||
@ -291,28 +359,43 @@ class KDiffusionSampler:
|
||||
steps, t_enc = setup_img2img_steps(p, steps)
|
||||
|
||||
if p.sampler_noise_scheduler_override:
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
|
||||
else:
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
|
||||
noise = noise * sigmas[steps - t_enc - 1]
|
||||
xi = x + noise
|
||||
|
||||
extra_params_kwargs = self.initialize(p)
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
|
||||
sigma_sched = sigmas[steps - t_enc - 1:]
|
||||
xi = x + noise * sigma_sched[0]
|
||||
|
||||
extra_params_kwargs = self.initialize(p)
|
||||
if 'sigma_min' in inspect.signature(self.func).parameters:
|
||||
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
||||
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
|
||||
if 'sigma_max' in inspect.signature(self.func).parameters:
|
||||
extra_params_kwargs['sigma_max'] = sigma_sched[0]
|
||||
if 'n' in inspect.signature(self.func).parameters:
|
||||
extra_params_kwargs['n'] = len(sigma_sched) - 1
|
||||
if 'sigma_sched' in inspect.signature(self.func).parameters:
|
||||
extra_params_kwargs['sigma_sched'] = sigma_sched
|
||||
if 'sigmas' in inspect.signature(self.func).parameters:
|
||||
extra_params_kwargs['sigmas'] = sigma_sched
|
||||
|
||||
self.model_wrap_cfg.init_latent = x
|
||||
|
||||
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
|
||||
return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
|
||||
|
||||
|
||||
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
|
||||
steps = steps or p.steps
|
||||
|
||||
if p.sampler_noise_scheduler_override:
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
|
||||
else:
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
|
||||
x = x * sigmas[0]
|
||||
|
||||
extra_params_kwargs = self.initialize(p)
|
||||
|
@ -12,12 +12,13 @@ import modules.interrogate
|
||||
import modules.memmon
|
||||
import modules.sd_models
|
||||
import modules.styles
|
||||
from modules.devices import get_optimal_device
|
||||
from modules.paths import script_path, sd_path
|
||||
import modules.devices as devices
|
||||
from modules import sd_samplers, sd_models
|
||||
from modules.hypernetworks import hypernetwork
|
||||
from modules.paths import models_path, script_path, sd_path
|
||||
|
||||
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
||||
default_sd_model_file = sd_model_file
|
||||
model_path = os.path.join(script_path, 'models')
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",)
|
||||
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
|
||||
@ -25,26 +26,36 @@ parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to director
|
||||
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
|
||||
parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
|
||||
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
|
||||
parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
|
||||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
|
||||
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
|
||||
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
||||
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
|
||||
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
|
||||
parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
|
||||
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
|
||||
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
|
||||
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
||||
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
|
||||
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(model_path, 'Codeformer'))
|
||||
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(model_path, 'GFPGAN'))
|
||||
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(model_path, 'ESRGAN'))
|
||||
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(model_path, 'BSRGAN'))
|
||||
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(model_path, 'RealESRGAN'))
|
||||
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(model_path, 'SwinIR'))
|
||||
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(model_path, 'LDSR'))
|
||||
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.")
|
||||
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
||||
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
||||
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
|
||||
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
|
||||
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
|
||||
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
|
||||
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
|
||||
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(models_path, 'ScuNET'))
|
||||
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(models_path, 'SwinIR'))
|
||||
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(models_path, 'LDSR'))
|
||||
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
|
||||
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
||||
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
|
||||
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
|
||||
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
|
||||
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
||||
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
||||
parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
||||
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
||||
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
||||
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
|
||||
@ -53,21 +64,44 @@ parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide dire
|
||||
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
|
||||
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
|
||||
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
||||
parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="editor")
|
||||
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
|
||||
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
|
||||
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
|
||||
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
|
||||
parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
|
||||
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
|
||||
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
|
||||
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
|
||||
|
||||
|
||||
cmd_opts = parser.parse_args()
|
||||
device = get_optimal_device()
|
||||
|
||||
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_bsrgan, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
|
||||
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'])
|
||||
|
||||
device = devices.device
|
||||
weight_load_location = None if cmd_opts.lowram else "cpu"
|
||||
|
||||
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
|
||||
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
||||
|
||||
xformers_available = False
|
||||
config_filename = cmd_opts.ui_settings_file
|
||||
|
||||
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
|
||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||
loaded_hypernetwork = None
|
||||
|
||||
|
||||
def reload_hypernetworks():
|
||||
global hypernetworks
|
||||
|
||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||
hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
|
||||
|
||||
|
||||
class State:
|
||||
skipped = False
|
||||
interrupted = False
|
||||
job = ""
|
||||
job_no = 0
|
||||
@ -78,6 +112,10 @@ class State:
|
||||
current_latent = None
|
||||
current_image = None
|
||||
current_image_sampling_step = 0
|
||||
textinfo = None
|
||||
|
||||
def skip(self):
|
||||
self.skipped = True
|
||||
|
||||
def interrupt(self):
|
||||
self.interrupted = True
|
||||
@ -88,7 +126,7 @@ class State:
|
||||
self.current_image_sampling_step = 0
|
||||
|
||||
def get_job_timestamp(self):
|
||||
return datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
return datetime.datetime.now().strftime("%Y%m%d%H%M%S") # shouldn't this return job_timestamp?
|
||||
|
||||
|
||||
state = State()
|
||||
@ -101,8 +139,6 @@ prompt_styles = modules.styles.StyleDatabase(styles_filename)
|
||||
interrogator = modules.interrogate.InterrogateModels("interrogate")
|
||||
|
||||
face_restorers = []
|
||||
# This was moved to webui.py with the other model "setup" calls.
|
||||
# modules.sd_models.list_models()
|
||||
|
||||
|
||||
def realesrgan_models_names():
|
||||
@ -111,18 +147,19 @@ def realesrgan_models_names():
|
||||
|
||||
|
||||
class OptionInfo:
|
||||
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None):
|
||||
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, show_on_main_page=False, refresh=None):
|
||||
self.default = default
|
||||
self.label = label
|
||||
self.component = component
|
||||
self.component_args = component_args
|
||||
self.onchange = onchange
|
||||
self.section = None
|
||||
self.refresh = refresh
|
||||
|
||||
|
||||
def options_section(section_identifer, options_dict):
|
||||
def options_section(section_identifier, options_dict):
|
||||
for k, v in options_dict.items():
|
||||
v.section = section_identifer
|
||||
v.section = section_identifier
|
||||
|
||||
return options_dict
|
||||
|
||||
@ -140,6 +177,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
|
||||
"grid_format": OptionInfo('png', 'File format for grids'),
|
||||
"grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
|
||||
"grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
|
||||
"grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
|
||||
"n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
|
||||
|
||||
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
|
||||
@ -150,6 +188,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
|
||||
|
||||
"use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
|
||||
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
|
||||
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
|
||||
@ -165,9 +204,10 @@ options_templates.update(options_section(('saving-paths', "Paths for saving"), {
|
||||
|
||||
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
|
||||
"save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
|
||||
"grid_save_to_dirs": OptionInfo(False, "Save grids to subdirectory"),
|
||||
"grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
|
||||
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
|
||||
"directories_filename_pattern": OptionInfo("", "Directory name pattern"),
|
||||
"directories_max_prompt_words": OptionInfo(8, "Max prompt words", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}),
|
||||
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('upscaling', "Upscaling"), {
|
||||
@ -177,7 +217,7 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
|
||||
"SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
|
||||
"SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
||||
"ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
|
||||
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
||||
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
||||
@ -189,50 +229,75 @@ options_templates.update(options_section(('face-restoration', "Face restoration"
|
||||
options_templates.update(options_section(('system', "System"), {
|
||||
"memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}),
|
||||
"samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
|
||||
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job. Broken in PyCharm console."),
|
||||
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('training', "Training"), {
|
||||
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
|
||||
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
||||
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
||||
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
||||
"training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}),
|
||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
||||
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
||||
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
||||
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
||||
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
||||
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
|
||||
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
|
||||
"enable_emphasis": OptionInfo(True, "Eemphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
||||
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
||||
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
|
||||
"filter_nsfw": OptionInfo(False, "Filter NSFW content"),
|
||||
'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
|
||||
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
||||
'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
||||
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
|
||||
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
|
||||
"interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."),
|
||||
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
|
||||
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
||||
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
||||
"interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"),
|
||||
"interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"),
|
||||
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
||||
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
|
||||
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
|
||||
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('ui', "User interface"), {
|
||||
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
||||
"show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
||||
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
||||
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
||||
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
||||
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
|
||||
"add_model_name_to_info": OptionInfo(False, "Add model name to generation information"),
|
||||
"font": OptionInfo("", "Font for image grids that have text"),
|
||||
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
|
||||
"js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
||||
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
||||
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
|
||||
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
|
||||
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in sd_samplers.all_samplers]}),
|
||||
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
|
||||
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
|
||||
}))
|
||||
|
||||
|
||||
class Options:
|
||||
data = None
|
||||
data_labels = options_templates
|
||||
@ -289,6 +354,8 @@ class Options:
|
||||
item = self.data_labels.get(key)
|
||||
item.onchange = func
|
||||
|
||||
func()
|
||||
|
||||
def dumpjson(self):
|
||||
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
|
||||
return json.dumps(d)
|
||||
@ -318,14 +385,14 @@ class TotalTQDM:
|
||||
)
|
||||
|
||||
def update(self):
|
||||
if not opts.multiple_tqdm:
|
||||
if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
|
||||
return
|
||||
if self._tqdm is None:
|
||||
self.reset()
|
||||
self._tqdm.update()
|
||||
|
||||
def updateTotal(self, new_total):
|
||||
if not opts.multiple_tqdm:
|
||||
if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
|
||||
return
|
||||
if self._tqdm is None:
|
||||
self.reset()
|
||||
|
@ -5,11 +5,12 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
from tqdm import tqdm
|
||||
|
||||
from modules import modelloader
|
||||
from modules.paths import models_path
|
||||
from modules.shared import cmd_opts, opts, device
|
||||
from modules.swinir_model_arch import SwinIR as net
|
||||
from modules.swinir_model_arch_v2 import Swin2SR as net2
|
||||
from modules.upscaler import Upscaler, UpscalerData
|
||||
|
||||
precision_scope = (
|
||||
@ -24,7 +25,6 @@ class UpscalerSwinIR(Upscaler):
|
||||
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
||||
"-L_x4_GAN.pth "
|
||||
self.model_name = "SwinIR 4x"
|
||||
self.model_path = os.path.join(models_path, self.name)
|
||||
self.user_path = dirname
|
||||
super().__init__()
|
||||
scalers = []
|
||||
@ -58,22 +58,42 @@ class UpscalerSwinIR(Upscaler):
|
||||
filename = path
|
||||
if filename is None or not os.path.exists(filename):
|
||||
return None
|
||||
model = net(
|
||||
if filename.endswith(".v2.pth"):
|
||||
model = net2(
|
||||
upscale=scale,
|
||||
in_chans=3,
|
||||
img_size=64,
|
||||
window_size=8,
|
||||
img_range=1.0,
|
||||
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
||||
embed_dim=240,
|
||||
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
||||
depths=[6, 6, 6, 6, 6, 6],
|
||||
embed_dim=180,
|
||||
num_heads=[6, 6, 6, 6, 6, 6],
|
||||
mlp_ratio=2,
|
||||
upsampler="nearest+conv",
|
||||
resi_connection="3conv",
|
||||
)
|
||||
resi_connection="1conv",
|
||||
)
|
||||
params = None
|
||||
else:
|
||||
model = net(
|
||||
upscale=scale,
|
||||
in_chans=3,
|
||||
img_size=64,
|
||||
window_size=8,
|
||||
img_range=1.0,
|
||||
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
||||
embed_dim=240,
|
||||
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
||||
mlp_ratio=2,
|
||||
upsampler="nearest+conv",
|
||||
resi_connection="3conv",
|
||||
)
|
||||
params = "params_ema"
|
||||
|
||||
pretrained_model = torch.load(filename)
|
||||
model.load_state_dict(pretrained_model["params_ema"], strict=True)
|
||||
if params is not None:
|
||||
model.load_state_dict(pretrained_model[params], strict=True)
|
||||
else:
|
||||
model.load_state_dict(pretrained_model, strict=True)
|
||||
if not cmd_opts.no_half:
|
||||
model = model.half()
|
||||
return model
|
||||
@ -122,18 +142,20 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
|
||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
|
||||
W = torch.zeros_like(E, dtype=torch.half, device=device)
|
||||
|
||||
for h_idx in h_idx_list:
|
||||
for w_idx in w_idx_list:
|
||||
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
||||
out_patch = model(in_patch)
|
||||
out_patch_mask = torch.ones_like(out_patch)
|
||||
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
||||
for h_idx in h_idx_list:
|
||||
for w_idx in w_idx_list:
|
||||
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
||||
out_patch = model(in_patch)
|
||||
out_patch_mask = torch.ones_like(out_patch)
|
||||
|
||||
E[
|
||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||
].add_(out_patch)
|
||||
W[
|
||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||
].add_(out_patch_mask)
|
||||
E[
|
||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||
].add_(out_patch)
|
||||
W[
|
||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||
].add_(out_patch_mask)
|
||||
pbar.update(1)
|
||||
output = E.div_(W)
|
||||
|
||||
return output
|
||||
|
@ -166,7 +166,7 @@ class SwinTransformerBlock(nn.Module):
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
input_resolution (tuple[int]): Input resulotion.
|
||||
input_resolution (tuple[int]): Input resolution.
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int): Window size.
|
||||
shift_size (int): Shift size for SW-MSA.
|
||||
|
1017
modules/swinir_model_arch_v2.py
Normal file
1017
modules/swinir_model_arch_v2.py
Normal file
File diff suppressed because it is too large
Load Diff
121
modules/textual_inversion/dataset.py
Normal file
121
modules/textual_inversion/dataset.py
Normal file
@ -0,0 +1,121 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import PIL
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision import transforms
|
||||
|
||||
import random
|
||||
import tqdm
|
||||
from modules import devices, shared
|
||||
import re
|
||||
|
||||
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
|
||||
|
||||
|
||||
class DatasetEntry:
|
||||
def __init__(self, filename=None, latent=None, filename_text=None):
|
||||
self.filename = filename
|
||||
self.latent = latent
|
||||
self.filename_text = filename_text
|
||||
self.cond = None
|
||||
self.cond_text = None
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
|
||||
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
self.dataset = []
|
||||
|
||||
with open(template_file, "r") as file:
|
||||
lines = [x.strip() for x in file.readlines()]
|
||||
|
||||
self.lines = lines
|
||||
|
||||
assert data_root, 'dataset directory not specified'
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
|
||||
print("Preparing dataset...")
|
||||
for path in tqdm.tqdm(self.image_paths):
|
||||
try:
|
||||
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
text_filename = os.path.splitext(path)[0] + ".txt"
|
||||
filename = os.path.basename(path)
|
||||
|
||||
if os.path.exists(text_filename):
|
||||
with open(text_filename, "r", encoding="utf8") as file:
|
||||
filename_text = file.read()
|
||||
else:
|
||||
filename_text = os.path.splitext(filename)[0]
|
||||
filename_text = re.sub(re_numbers_at_start, '', filename_text)
|
||||
if re_word:
|
||||
tokens = re_word.findall(filename_text)
|
||||
filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens)
|
||||
|
||||
npimage = np.array(image).astype(np.uint8)
|
||||
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
|
||||
|
||||
torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32)
|
||||
torchdata = torch.moveaxis(torchdata, 2, 0)
|
||||
|
||||
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
|
||||
init_latent = init_latent.to(devices.cpu)
|
||||
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
|
||||
|
||||
if include_cond:
|
||||
entry.cond_text = self.create_text(filename_text)
|
||||
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
|
||||
|
||||
self.dataset.append(entry)
|
||||
|
||||
assert len(self.dataset) > 1, "No images have been found in the dataset."
|
||||
self.length = len(self.dataset) * repeats // batch_size
|
||||
|
||||
self.initial_indexes = np.arange(len(self.dataset))
|
||||
self.indexes = None
|
||||
self.shuffle()
|
||||
|
||||
def shuffle(self):
|
||||
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
|
||||
|
||||
def create_text(self, filename_text):
|
||||
text = random.choice(self.lines)
|
||||
text = text.replace("[name]", self.placeholder_token)
|
||||
text = text.replace("[filewords]", filename_text)
|
||||
return text
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
def __getitem__(self, i):
|
||||
res = []
|
||||
|
||||
for j in range(self.batch_size):
|
||||
position = i * self.batch_size + j
|
||||
if position % len(self.indexes) == 0:
|
||||
self.shuffle()
|
||||
|
||||
index = self.indexes[position % len(self.indexes)]
|
||||
entry = self.dataset[index]
|
||||
|
||||
if entry.cond is None:
|
||||
entry.cond_text = self.create_text(entry.filename_text)
|
||||
|
||||
res.append(entry)
|
||||
|
||||
return res
|
219
modules/textual_inversion/image_embedding.py
Normal file
219
modules/textual_inversion/image_embedding.py
Normal file
@ -0,0 +1,219 @@
|
||||
import base64
|
||||
import json
|
||||
import numpy as np
|
||||
import zlib
|
||||
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
|
||||
from fonts.ttf import Roboto
|
||||
import torch
|
||||
|
||||
|
||||
class EmbeddingEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()}
|
||||
return json.JSONEncoder.default(self, obj)
|
||||
|
||||
|
||||
class EmbeddingDecoder(json.JSONDecoder):
|
||||
def __init__(self, *args, **kwargs):
|
||||
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
|
||||
|
||||
def object_hook(self, d):
|
||||
if 'TORCHTENSOR' in d:
|
||||
return torch.from_numpy(np.array(d['TORCHTENSOR']))
|
||||
return d
|
||||
|
||||
|
||||
def embedding_to_b64(data):
|
||||
d = json.dumps(data, cls=EmbeddingEncoder)
|
||||
return base64.b64encode(d.encode())
|
||||
|
||||
|
||||
def embedding_from_b64(data):
|
||||
d = base64.b64decode(data)
|
||||
return json.loads(d, cls=EmbeddingDecoder)
|
||||
|
||||
|
||||
def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
|
||||
while True:
|
||||
seed = (a * seed + c) % m
|
||||
yield seed % 255
|
||||
|
||||
|
||||
def xor_block(block):
|
||||
g = lcg()
|
||||
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
|
||||
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)
|
||||
|
||||
|
||||
def style_block(block, sequence):
|
||||
im = Image.new('RGB', (block.shape[1], block.shape[0]))
|
||||
draw = ImageDraw.Draw(im)
|
||||
i = 0
|
||||
for x in range(-6, im.size[0], 8):
|
||||
for yi, y in enumerate(range(-6, im.size[1], 8)):
|
||||
offset = 0
|
||||
if yi % 2 == 0:
|
||||
offset = 4
|
||||
shade = sequence[i % len(sequence)]
|
||||
i += 1
|
||||
draw.ellipse((x+offset, y, x+6+offset, y+6), fill=(shade, shade, shade))
|
||||
|
||||
fg = np.array(im).astype(np.uint8) & 0xF0
|
||||
|
||||
return block ^ fg
|
||||
|
||||
|
||||
def insert_image_data_embed(image, data):
|
||||
d = 3
|
||||
data_compressed = zlib.compress(json.dumps(data, cls=EmbeddingEncoder).encode(), level=9)
|
||||
data_np_ = np.frombuffer(data_compressed, np.uint8).copy()
|
||||
data_np_high = data_np_ >> 4
|
||||
data_np_low = data_np_ & 0x0F
|
||||
|
||||
h = image.size[1]
|
||||
next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
|
||||
next_size = next_size + ((h*d)-(next_size % (h*d)))
|
||||
|
||||
data_np_low.resize(next_size)
|
||||
data_np_low = data_np_low.reshape((h, -1, d))
|
||||
|
||||
data_np_high.resize(next_size)
|
||||
data_np_high = data_np_high.reshape((h, -1, d))
|
||||
|
||||
edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
|
||||
edge_style = (np.abs(edge_style)/np.max(np.abs(edge_style))*255).astype(np.uint8)
|
||||
|
||||
data_np_low = style_block(data_np_low, sequence=edge_style)
|
||||
data_np_low = xor_block(data_np_low)
|
||||
data_np_high = style_block(data_np_high, sequence=edge_style[::-1])
|
||||
data_np_high = xor_block(data_np_high)
|
||||
|
||||
im_low = Image.fromarray(data_np_low, mode='RGB')
|
||||
im_high = Image.fromarray(data_np_high, mode='RGB')
|
||||
|
||||
background = Image.new('RGB', (image.size[0]+im_low.size[0]+im_high.size[0]+2, image.size[1]), (0, 0, 0))
|
||||
background.paste(im_low, (0, 0))
|
||||
background.paste(image, (im_low.size[0]+1, 0))
|
||||
background.paste(im_high, (im_low.size[0]+1+image.size[0]+1, 0))
|
||||
|
||||
return background
|
||||
|
||||
|
||||
def crop_black(img, tol=0):
|
||||
mask = (img > tol).all(2)
|
||||
mask0, mask1 = mask.any(0), mask.any(1)
|
||||
col_start, col_end = mask0.argmax(), mask.shape[1]-mask0[::-1].argmax()
|
||||
row_start, row_end = mask1.argmax(), mask.shape[0]-mask1[::-1].argmax()
|
||||
return img[row_start:row_end, col_start:col_end]
|
||||
|
||||
|
||||
def extract_image_data_embed(image):
|
||||
d = 3
|
||||
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
|
||||
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
|
||||
if black_cols[0].shape[0] < 2:
|
||||
print('No Image data blocks found.')
|
||||
return None
|
||||
|
||||
data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
|
||||
data_block_upper = outarr[:, black_cols[0].max()+1:, :].astype(np.uint8)
|
||||
|
||||
data_block_lower = xor_block(data_block_lower)
|
||||
data_block_upper = xor_block(data_block_upper)
|
||||
|
||||
data_block = (data_block_upper << 4) | (data_block_lower)
|
||||
data_block = data_block.flatten().tobytes()
|
||||
|
||||
data = zlib.decompress(data_block)
|
||||
return json.loads(data, cls=EmbeddingDecoder)
|
||||
|
||||
|
||||
def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, textfont=None):
|
||||
from math import cos
|
||||
|
||||
image = srcimage.copy()
|
||||
|
||||
if textfont is None:
|
||||
try:
|
||||
textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
|
||||
textfont = opts.font or Roboto
|
||||
except Exception:
|
||||
textfont = Roboto
|
||||
|
||||
factor = 1.5
|
||||
gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0))
|
||||
for y in range(image.size[1]):
|
||||
mag = 1-cos(y/image.size[1]*factor)
|
||||
mag = max(mag, 1-cos((image.size[1]-y)/image.size[1]*factor*1.1))
|
||||
gradient.putpixel((0, y), (0, 0, 0, int(mag*255)))
|
||||
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
|
||||
|
||||
draw = ImageDraw.Draw(image)
|
||||
fontsize = 32
|
||||
font = ImageFont.truetype(textfont, fontsize)
|
||||
padding = 10
|
||||
|
||||
_, _, w, h = draw.textbbox((0, 0), title, font=font)
|
||||
fontsize = min(int(fontsize * (((image.size[0]*0.75)-(padding*4))/w)), 72)
|
||||
font = ImageFont.truetype(textfont, fontsize)
|
||||
_, _, w, h = draw.textbbox((0, 0), title, font=font)
|
||||
draw.text((padding, padding), title, anchor='lt', font=font, fill=(255, 255, 255, 230))
|
||||
|
||||
_, _, w, h = draw.textbbox((0, 0), footerLeft, font=font)
|
||||
fontsize_left = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
_, _, w, h = draw.textbbox((0, 0), footerMid, font=font)
|
||||
fontsize_mid = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
_, _, w, h = draw.textbbox((0, 0), footerRight, font=font)
|
||||
fontsize_right = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
|
||||
font = ImageFont.truetype(textfont, min(fontsize_left, fontsize_mid, fontsize_right))
|
||||
|
||||
draw.text((padding, image.size[1]-padding), footerLeft, anchor='ls', font=font, fill=(255, 255, 255, 230))
|
||||
draw.text((image.size[0]/2, image.size[1]-padding), footerMid, anchor='ms', font=font, fill=(255, 255, 255, 230))
|
||||
draw.text((image.size[0]-padding, image.size[1]-padding), footerRight, anchor='rs', font=font, fill=(255, 255, 255, 230))
|
||||
|
||||
return image
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
testEmbed = Image.open('test_embedding.png')
|
||||
data = extract_image_data_embed(testEmbed)
|
||||
assert data is not None
|
||||
|
||||
data = embedding_from_b64(testEmbed.text['sd-ti-embedding'])
|
||||
assert data is not None
|
||||
|
||||
image = Image.new('RGBA', (512, 512), (255, 255, 200, 255))
|
||||
cap_image = caption_image_overlay(image, 'title', 'footerLeft', 'footerMid', 'footerRight')
|
||||
|
||||
test_embed = {'string_to_param': {'*': torch.from_numpy(np.random.random((2, 4096)))}}
|
||||
|
||||
embedded_image = insert_image_data_embed(cap_image, test_embed)
|
||||
|
||||
retrived_embed = extract_image_data_embed(embedded_image)
|
||||
|
||||
assert str(retrived_embed) == str(test_embed)
|
||||
|
||||
embedded_image2 = insert_image_data_embed(cap_image, retrived_embed)
|
||||
|
||||
assert embedded_image == embedded_image2
|
||||
|
||||
g = lcg()
|
||||
shared_random = np.array([next(g) for _ in range(100)]).astype(np.uint8).tolist()
|
||||
|
||||
reference_random = [253, 242, 127, 44, 157, 27, 239, 133, 38, 79, 167, 4, 177,
|
||||
95, 130, 79, 78, 14, 52, 215, 220, 194, 126, 28, 240, 179,
|
||||
160, 153, 149, 50, 105, 14, 21, 218, 199, 18, 54, 198, 193,
|
||||
38, 128, 19, 53, 195, 124, 75, 205, 12, 6, 145, 0, 28,
|
||||
30, 148, 8, 45, 218, 171, 55, 249, 97, 166, 12, 35, 0,
|
||||
41, 221, 122, 215, 170, 31, 113, 186, 97, 119, 31, 23, 185,
|
||||
66, 140, 30, 41, 37, 63, 137, 109, 216, 55, 159, 145, 82,
|
||||
204, 86, 73, 222, 44, 198, 118, 240, 97]
|
||||
|
||||
assert shared_random == reference_random
|
||||
|
||||
hunna_kay_random_sum = sum(np.array([next(g) for _ in range(100000)]).astype(np.uint8).tolist())
|
||||
|
||||
assert 12731374 == hunna_kay_random_sum
|
69
modules/textual_inversion/learn_schedule.py
Normal file
69
modules/textual_inversion/learn_schedule.py
Normal file
@ -0,0 +1,69 @@
|
||||
import tqdm
|
||||
|
||||
|
||||
class LearnScheduleIterator:
|
||||
def __init__(self, learn_rate, max_steps, cur_step=0):
|
||||
"""
|
||||
specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, 1e-5:10000 until 10000
|
||||
"""
|
||||
|
||||
pairs = learn_rate.split(',')
|
||||
self.rates = []
|
||||
self.it = 0
|
||||
self.maxit = 0
|
||||
for i, pair in enumerate(pairs):
|
||||
tmp = pair.split(':')
|
||||
if len(tmp) == 2:
|
||||
step = int(tmp[1])
|
||||
if step > cur_step:
|
||||
self.rates.append((float(tmp[0]), min(step, max_steps)))
|
||||
self.maxit += 1
|
||||
if step > max_steps:
|
||||
return
|
||||
elif step == -1:
|
||||
self.rates.append((float(tmp[0]), max_steps))
|
||||
self.maxit += 1
|
||||
return
|
||||
else:
|
||||
self.rates.append((float(tmp[0]), max_steps))
|
||||
self.maxit += 1
|
||||
return
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.it < self.maxit:
|
||||
self.it += 1
|
||||
return self.rates[self.it - 1]
|
||||
else:
|
||||
raise StopIteration
|
||||
|
||||
|
||||
class LearnRateScheduler:
|
||||
def __init__(self, learn_rate, max_steps, cur_step=0, verbose=True):
|
||||
self.schedules = LearnScheduleIterator(learn_rate, max_steps, cur_step)
|
||||
(self.learn_rate, self.end_step) = next(self.schedules)
|
||||
self.verbose = verbose
|
||||
|
||||
if self.verbose:
|
||||
print(f'Training at rate of {self.learn_rate} until step {self.end_step}')
|
||||
|
||||
self.finished = False
|
||||
|
||||
def apply(self, optimizer, step_number):
|
||||
if step_number <= self.end_step:
|
||||
return
|
||||
|
||||
try:
|
||||
(self.learn_rate, self.end_step) = next(self.schedules)
|
||||
except Exception:
|
||||
self.finished = True
|
||||
return
|
||||
|
||||
if self.verbose:
|
||||
tqdm.tqdm.write(f'Training at rate of {self.learn_rate} until step {self.end_step}')
|
||||
|
||||
for pg in optimizer.param_groups:
|
||||
pg['lr'] = self.learn_rate
|
||||
|
116
modules/textual_inversion/preprocess.py
Normal file
116
modules/textual_inversion/preprocess.py
Normal file
@ -0,0 +1,116 @@
|
||||
import os
|
||||
from PIL import Image, ImageOps
|
||||
import platform
|
||||
import sys
|
||||
import tqdm
|
||||
import time
|
||||
|
||||
from modules import shared, images
|
||||
from modules.shared import opts, cmd_opts
|
||||
if cmd_opts.deepdanbooru:
|
||||
import modules.deepbooru as deepbooru
|
||||
|
||||
|
||||
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
|
||||
try:
|
||||
if process_caption:
|
||||
shared.interrogator.load()
|
||||
|
||||
if process_caption_deepbooru:
|
||||
db_opts = deepbooru.create_deepbooru_opts()
|
||||
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
|
||||
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
|
||||
|
||||
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
|
||||
|
||||
finally:
|
||||
|
||||
if process_caption:
|
||||
shared.interrogator.send_blip_to_ram()
|
||||
|
||||
if process_caption_deepbooru:
|
||||
deepbooru.release_process()
|
||||
|
||||
|
||||
|
||||
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
|
||||
width = process_width
|
||||
height = process_height
|
||||
src = os.path.abspath(process_src)
|
||||
dst = os.path.abspath(process_dst)
|
||||
|
||||
assert src != dst, 'same directory specified as source and destination'
|
||||
|
||||
os.makedirs(dst, exist_ok=True)
|
||||
|
||||
files = os.listdir(src)
|
||||
|
||||
shared.state.textinfo = "Preprocessing..."
|
||||
shared.state.job_count = len(files)
|
||||
|
||||
def save_pic_with_caption(image, index):
|
||||
caption = ""
|
||||
|
||||
if process_caption:
|
||||
caption += shared.interrogator.generate_caption(image)
|
||||
|
||||
if process_caption_deepbooru:
|
||||
if len(caption) > 0:
|
||||
caption += ", "
|
||||
caption += deepbooru.get_tags_from_process(image)
|
||||
|
||||
filename_part = filename
|
||||
filename_part = os.path.splitext(filename_part)[0]
|
||||
filename_part = os.path.basename(filename_part)
|
||||
|
||||
basename = f"{index:05}-{subindex[0]}-{filename_part}"
|
||||
image.save(os.path.join(dst, f"{basename}.png"))
|
||||
|
||||
if len(caption) > 0:
|
||||
with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file:
|
||||
file.write(caption)
|
||||
|
||||
subindex[0] += 1
|
||||
|
||||
def save_pic(image, index):
|
||||
save_pic_with_caption(image, index)
|
||||
|
||||
if process_flip:
|
||||
save_pic_with_caption(ImageOps.mirror(image), index)
|
||||
|
||||
for index, imagefile in enumerate(tqdm.tqdm(files)):
|
||||
subindex = [0]
|
||||
filename = os.path.join(src, imagefile)
|
||||
try:
|
||||
img = Image.open(filename).convert("RGB")
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
ratio = img.height / img.width
|
||||
is_tall = ratio > 1.35
|
||||
is_wide = ratio < 1 / 1.35
|
||||
|
||||
if process_split and is_tall:
|
||||
img = img.resize((width, height * img.height // img.width))
|
||||
|
||||
top = img.crop((0, 0, width, height))
|
||||
save_pic(top, index)
|
||||
|
||||
bot = img.crop((0, img.height - height, width, img.height))
|
||||
save_pic(bot, index)
|
||||
elif process_split and is_wide:
|
||||
img = img.resize((width * img.width // img.height, height))
|
||||
|
||||
left = img.crop((0, 0, width, height))
|
||||
save_pic(left, index)
|
||||
|
||||
right = img.crop((img.width - width, 0, img.width, height))
|
||||
save_pic(right, index)
|
||||
else:
|
||||
img = images.resize_image(1, img, width, height)
|
||||
save_pic(img, index)
|
||||
|
||||
shared.state.nextjob()
|
BIN
modules/textual_inversion/test_embedding.png
Normal file
BIN
modules/textual_inversion/test_embedding.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 478 KiB |
363
modules/textual_inversion/textual_inversion.py
Normal file
363
modules/textual_inversion/textual_inversion.py
Normal file
@ -0,0 +1,363 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import torch
|
||||
import tqdm
|
||||
import html
|
||||
import datetime
|
||||
import csv
|
||||
|
||||
from PIL import Image, PngImagePlugin
|
||||
|
||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
|
||||
from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64,
|
||||
insert_image_data_embed, extract_image_data_embed,
|
||||
caption_image_overlay)
|
||||
|
||||
class Embedding:
|
||||
def __init__(self, vec, name, step=None):
|
||||
self.vec = vec
|
||||
self.name = name
|
||||
self.step = step
|
||||
self.cached_checksum = None
|
||||
self.sd_checkpoint = None
|
||||
self.sd_checkpoint_name = None
|
||||
|
||||
def save(self, filename):
|
||||
embedding_data = {
|
||||
"string_to_token": {"*": 265},
|
||||
"string_to_param": {"*": self.vec},
|
||||
"name": self.name,
|
||||
"step": self.step,
|
||||
"sd_checkpoint": self.sd_checkpoint,
|
||||
"sd_checkpoint_name": self.sd_checkpoint_name,
|
||||
}
|
||||
|
||||
torch.save(embedding_data, filename)
|
||||
|
||||
def checksum(self):
|
||||
if self.cached_checksum is not None:
|
||||
return self.cached_checksum
|
||||
|
||||
def const_hash(a):
|
||||
r = 0
|
||||
for v in a:
|
||||
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
|
||||
return r
|
||||
|
||||
self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}'
|
||||
return self.cached_checksum
|
||||
|
||||
|
||||
class EmbeddingDatabase:
|
||||
def __init__(self, embeddings_dir):
|
||||
self.ids_lookup = {}
|
||||
self.word_embeddings = {}
|
||||
self.dir_mtime = None
|
||||
self.embeddings_dir = embeddings_dir
|
||||
|
||||
def register_embedding(self, embedding, model):
|
||||
|
||||
self.word_embeddings[embedding.name] = embedding
|
||||
|
||||
ids = model.cond_stage_model.tokenizer([embedding.name], add_special_tokens=False)['input_ids'][0]
|
||||
|
||||
first_id = ids[0]
|
||||
if first_id not in self.ids_lookup:
|
||||
self.ids_lookup[first_id] = []
|
||||
|
||||
self.ids_lookup[first_id] = sorted(self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True)
|
||||
|
||||
return embedding
|
||||
|
||||
def load_textual_inversion_embeddings(self):
|
||||
mt = os.path.getmtime(self.embeddings_dir)
|
||||
if self.dir_mtime is not None and mt <= self.dir_mtime:
|
||||
return
|
||||
|
||||
self.dir_mtime = mt
|
||||
self.ids_lookup.clear()
|
||||
self.word_embeddings.clear()
|
||||
|
||||
def process_file(path, filename):
|
||||
name = os.path.splitext(filename)[0]
|
||||
|
||||
data = []
|
||||
|
||||
if filename.upper().endswith('.PNG'):
|
||||
embed_image = Image.open(path)
|
||||
if 'sd-ti-embedding' in embed_image.text:
|
||||
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
data = extract_image_data_embed(embed_image)
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
data = torch.load(path, map_location="cpu")
|
||||
|
||||
# textual inversion embeddings
|
||||
if 'string_to_param' in data:
|
||||
param_dict = data['string_to_param']
|
||||
if hasattr(param_dict, '_parameters'):
|
||||
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
|
||||
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
||||
emb = next(iter(param_dict.items()))[1]
|
||||
# diffuser concepts
|
||||
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
|
||||
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
||||
|
||||
emb = next(iter(data.values()))
|
||||
if len(emb.shape) == 1:
|
||||
emb = emb.unsqueeze(0)
|
||||
else:
|
||||
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
|
||||
|
||||
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
||||
embedding = Embedding(vec, name)
|
||||
embedding.step = data.get('step', None)
|
||||
embedding.sd_checkpoint = data.get('hash', None)
|
||||
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
|
||||
self.register_embedding(embedding, shared.sd_model)
|
||||
|
||||
for fn in os.listdir(self.embeddings_dir):
|
||||
try:
|
||||
fullfn = os.path.join(self.embeddings_dir, fn)
|
||||
|
||||
if os.stat(fullfn).st_size == 0:
|
||||
continue
|
||||
|
||||
process_file(fullfn, fn)
|
||||
except Exception:
|
||||
print(f"Error loading emedding {fn}:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
continue
|
||||
|
||||
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
|
||||
|
||||
def find_embedding_at_position(self, tokens, offset):
|
||||
token = tokens[offset]
|
||||
possible_matches = self.ids_lookup.get(token, None)
|
||||
|
||||
if possible_matches is None:
|
||||
return None, None
|
||||
|
||||
for ids, embedding in possible_matches:
|
||||
if tokens[offset:offset + len(ids)] == ids:
|
||||
return embedding, len(ids)
|
||||
|
||||
return None, None
|
||||
|
||||
|
||||
def create_embedding(name, num_vectors_per_token, init_text='*'):
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
|
||||
|
||||
ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
|
||||
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
|
||||
|
||||
for i in range(num_vectors_per_token):
|
||||
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
|
||||
|
||||
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
|
||||
assert not os.path.exists(fn), f"file {fn} already exists"
|
||||
|
||||
embedding = Embedding(vec, name)
|
||||
embedding.step = 0
|
||||
embedding.save(fn)
|
||||
|
||||
return fn
|
||||
|
||||
|
||||
def write_loss(log_directory, filename, step, epoch_len, values):
|
||||
if shared.opts.training_write_csv_every == 0:
|
||||
return
|
||||
|
||||
if step % shared.opts.training_write_csv_every != 0:
|
||||
return
|
||||
|
||||
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
|
||||
|
||||
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
|
||||
csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])
|
||||
|
||||
if write_csv_header:
|
||||
csv_writer.writeheader()
|
||||
|
||||
epoch = step // epoch_len
|
||||
epoch_step = step - epoch * epoch_len
|
||||
|
||||
csv_writer.writerow({
|
||||
"step": step + 1,
|
||||
"epoch": epoch + 1,
|
||||
"epoch_step": epoch_step + 1,
|
||||
**values,
|
||||
})
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
shared.state.job_count = steps
|
||||
|
||||
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
|
||||
|
||||
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
|
||||
|
||||
if save_embedding_every > 0:
|
||||
embedding_dir = os.path.join(log_directory, "embeddings")
|
||||
os.makedirs(embedding_dir, exist_ok=True)
|
||||
else:
|
||||
embedding_dir = None
|
||||
|
||||
if create_image_every > 0:
|
||||
images_dir = os.path.join(log_directory, "images")
|
||||
os.makedirs(images_dir, exist_ok=True)
|
||||
else:
|
||||
images_dir = None
|
||||
|
||||
if create_image_every > 0 and save_image_with_stored_embedding:
|
||||
images_embeds_dir = os.path.join(log_directory, "image_embeddings")
|
||||
os.makedirs(images_embeds_dir, exist_ok=True)
|
||||
else:
|
||||
images_embeds_dir = None
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
|
||||
|
||||
hijack = sd_hijack.model_hijack
|
||||
|
||||
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
||||
embedding.vec.requires_grad = True
|
||||
|
||||
losses = torch.zeros((32,))
|
||||
|
||||
last_saved_file = "<none>"
|
||||
last_saved_image = "<none>"
|
||||
|
||||
ititial_step = embedding.step or 0
|
||||
if ititial_step > steps:
|
||||
return embedding, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||
for i, entries in pbar:
|
||||
embedding.step = i + ititial_step
|
||||
|
||||
scheduler.apply(optimizer, embedding.step)
|
||||
if scheduler.finished:
|
||||
break
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
c = cond_model([entry.cond_text for entry in entries])
|
||||
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
|
||||
loss = shared.sd_model(x, c)[0]
|
||||
del x
|
||||
|
||||
losses[embedding.step % losses.shape[0]] = loss.item()
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epoch_num = embedding.step // len(ds)
|
||||
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
|
||||
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
|
||||
|
||||
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
|
||||
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
|
||||
embedding.save(last_saved_file)
|
||||
|
||||
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
|
||||
"loss": f"{losses.mean():.7f}",
|
||||
"learn_rate": scheduler.learn_rate
|
||||
})
|
||||
|
||||
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
||||
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
)
|
||||
|
||||
if preview_from_txt2img:
|
||||
p.prompt = preview_prompt
|
||||
p.negative_prompt = preview_negative_prompt
|
||||
p.steps = preview_steps
|
||||
p.sampler_index = preview_sampler_index
|
||||
p.cfg_scale = preview_cfg_scale
|
||||
p.seed = preview_seed
|
||||
p.width = preview_width
|
||||
p.height = preview_height
|
||||
else:
|
||||
p.prompt = entries[0].cond_text
|
||||
p.steps = 20
|
||||
p.width = training_width
|
||||
p.height = training_height
|
||||
|
||||
preview_text = p.prompt
|
||||
|
||||
processed = processing.process_images(p)
|
||||
image = processed.images[0]
|
||||
|
||||
shared.state.current_image = image
|
||||
|
||||
if save_image_with_stored_embedding and os.path.exists(last_saved_file):
|
||||
|
||||
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
info = PngImagePlugin.PngInfo()
|
||||
data = torch.load(last_saved_file)
|
||||
info.add_text("sd-ti-embedding", embedding_to_b64(data))
|
||||
|
||||
title = "<{}>".format(data.get('name', '???'))
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
footer_left = checkpoint.model_name
|
||||
footer_mid = '[{}]'.format(checkpoint.hash)
|
||||
footer_right = '{}'.format(embedding.step)
|
||||
|
||||
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
|
||||
captioned_image = insert_image_data_embed(captioned_image, data)
|
||||
|
||||
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
|
||||
|
||||
image.save(last_saved_image)
|
||||
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
shared.state.job_no = embedding.step
|
||||
|
||||
shared.state.textinfo = f"""
|
||||
<p>
|
||||
Loss: {losses.mean():.7f}<br/>
|
||||
Step: {embedding.step}<br/>
|
||||
Last prompt: {html.escape(entries[0].cond_text)}<br/>
|
||||
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
||||
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
</p>
|
||||
"""
|
||||
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
|
||||
embedding.sd_checkpoint = checkpoint.hash
|
||||
embedding.sd_checkpoint_name = checkpoint.model_name
|
||||
embedding.cached_checksum = None
|
||||
embedding.save(filename)
|
||||
|
||||
return embedding, filename
|
42
modules/textual_inversion/ui.py
Normal file
42
modules/textual_inversion/ui.py
Normal file
@ -0,0 +1,42 @@
|
||||
import html
|
||||
|
||||
import gradio as gr
|
||||
|
||||
import modules.textual_inversion.textual_inversion
|
||||
import modules.textual_inversion.preprocess
|
||||
from modules import sd_hijack, shared
|
||||
|
||||
|
||||
def create_embedding(name, initialization_text, nvpt):
|
||||
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, init_text=initialization_text)
|
||||
|
||||
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||
|
||||
return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
|
||||
|
||||
|
||||
def preprocess(*args):
|
||||
modules.textual_inversion.preprocess.preprocess(*args)
|
||||
|
||||
return "Preprocessing finished.", ""
|
||||
|
||||
|
||||
def train_embedding(*args):
|
||||
|
||||
assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
|
||||
|
||||
try:
|
||||
sd_hijack.undo_optimizations()
|
||||
|
||||
embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args)
|
||||
|
||||
res = f"""
|
||||
Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps.
|
||||
Embedding saved to {html.escape(filename)}
|
||||
"""
|
||||
return res, ""
|
||||
except Exception:
|
||||
raise
|
||||
finally:
|
||||
sd_hijack.apply_optimizations()
|
||||
|
@ -6,7 +6,7 @@ import modules.processing as processing
|
||||
from modules.ui import plaintext_to_html
|
||||
|
||||
|
||||
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float, *args):
|
||||
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
|
||||
p = StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
|
||||
@ -30,11 +30,14 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
|
||||
restore_faces=restore_faces,
|
||||
tiling=tiling,
|
||||
enable_hr=enable_hr,
|
||||
scale_latent=scale_latent if enable_hr else None,
|
||||
denoising_strength=denoising_strength if enable_hr else None,
|
||||
firstphase_width=firstphase_width if enable_hr else None,
|
||||
firstphase_height=firstphase_height if enable_hr else None,
|
||||
)
|
||||
|
||||
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
|
||||
if cmd_opts.enable_console_prompts:
|
||||
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
|
||||
|
||||
processed = modules.scripts.scripts_txt2img.run(p, *args)
|
||||
|
||||
if processed is None:
|
||||
@ -46,5 +49,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
|
||||
if opts.samples_log_stdout:
|
||||
print(generation_info_js)
|
||||
|
||||
if opts.do_not_show_images:
|
||||
processed.images = []
|
||||
|
||||
return processed.images, generation_info_js, plaintext_to_html(processed.info)
|
||||
|
||||
|
740
modules/ui.py
740
modules/ui.py
File diff suppressed because it is too large
Load Diff
@ -36,10 +36,11 @@ class Upscaler:
|
||||
self.half = not modules.shared.cmd_opts.no_half
|
||||
self.pre_pad = 0
|
||||
self.mod_scale = None
|
||||
if self.name is not None and create_dirs:
|
||||
|
||||
if self.model_path is None and self.name:
|
||||
self.model_path = os.path.join(models_path, self.name)
|
||||
if not os.path.exists(self.model_path):
|
||||
os.makedirs(self.model_path)
|
||||
if self.model_path and create_dirs:
|
||||
os.makedirs(self.model_path, exist_ok=True)
|
||||
|
||||
try:
|
||||
import cv2
|
||||
|
@ -4,7 +4,7 @@ fairscale==0.4.4
|
||||
fonts
|
||||
font-roboto
|
||||
gfpgan
|
||||
gradio==3.4b3
|
||||
gradio==3.4.1
|
||||
invisible-watermark
|
||||
numpy
|
||||
omegaconf
|
||||
@ -13,14 +13,13 @@ Pillow
|
||||
pytorch_lightning
|
||||
realesrgan
|
||||
scikit-image>=0.19
|
||||
git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379
|
||||
timm==0.4.12
|
||||
transformers==4.19.2
|
||||
torch
|
||||
einops
|
||||
jsonmerge
|
||||
clean-fid
|
||||
git+https://github.com/openai/CLIP@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
|
||||
resize-right
|
||||
torchdiffeq
|
||||
kornia
|
||||
lark
|
||||
|
@ -2,7 +2,7 @@ transformers==4.19.2
|
||||
diffusers==0.3.0
|
||||
basicsr==1.4.2
|
||||
gfpgan==1.3.8
|
||||
gradio==3.4b3
|
||||
gradio==3.4.1
|
||||
numpy==1.23.3
|
||||
Pillow==9.2.0
|
||||
realesrgan==0.3.0
|
||||
@ -18,7 +18,7 @@ piexif==1.1.3
|
||||
einops==0.4.1
|
||||
jsonmerge==1.8.0
|
||||
clean-fid==0.1.29
|
||||
git+https://github.com/openai/CLIP@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
|
||||
resize-right==0.0.2
|
||||
torchdiffeq==0.2.3
|
||||
kornia==0.6.7
|
||||
lark==1.1.2
|
||||
|
23
script.js
23
script.js
@ -6,6 +6,10 @@ function get_uiCurrentTab() {
|
||||
return gradioApp().querySelector('.tabs button:not(.border-transparent)')
|
||||
}
|
||||
|
||||
function get_uiCurrentTabContent() {
|
||||
return gradioApp().querySelector('.tabitem[id^=tab_]:not([style*="display: none"])')
|
||||
}
|
||||
|
||||
uiUpdateCallbacks = []
|
||||
uiTabChangeCallbacks = []
|
||||
let uiCurrentTab = null
|
||||
@ -40,6 +44,25 @@ document.addEventListener("DOMContentLoaded", function() {
|
||||
mutationObserver.observe( gradioApp(), { childList:true, subtree:true })
|
||||
});
|
||||
|
||||
/**
|
||||
* Add a ctrl+enter as a shortcut to start a generation
|
||||
*/
|
||||
document.addEventListener('keydown', function(e) {
|
||||
var handled = false;
|
||||
if (e.key !== undefined) {
|
||||
if((e.key == "Enter" && (e.metaKey || e.ctrlKey || e.altKey))) handled = true;
|
||||
} else if (e.keyCode !== undefined) {
|
||||
if((e.keyCode == 13 && (e.metaKey || e.ctrlKey || e.altKey))) handled = true;
|
||||
}
|
||||
if (handled) {
|
||||
button = get_uiCurrentTabContent().querySelector('button[id$=_generate]');
|
||||
if (button) {
|
||||
button.click();
|
||||
}
|
||||
e.preventDefault();
|
||||
}
|
||||
})
|
||||
|
||||
/**
|
||||
* checks that a UI element is not in another hidden element or tab content
|
||||
*/
|
||||
|
@ -8,7 +8,6 @@ import gradio as gr
|
||||
|
||||
from modules import processing, shared, sd_samplers, prompt_parser
|
||||
from modules.processing import Processed
|
||||
from modules.sd_samplers import samplers
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
|
||||
import torch
|
||||
@ -121,17 +120,45 @@ class Script(scripts.Script):
|
||||
return is_img2img
|
||||
|
||||
def ui(self, is_img2img):
|
||||
info = gr.Markdown('''
|
||||
* `CFG Scale` should be 2 or lower.
|
||||
''')
|
||||
|
||||
override_sampler = gr.Checkbox(label="Override `Sampling method` to Euler?(this method is built for it)", value=True)
|
||||
|
||||
override_prompt = gr.Checkbox(label="Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", value=True)
|
||||
original_prompt = gr.Textbox(label="Original prompt", lines=1)
|
||||
original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1)
|
||||
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
|
||||
|
||||
override_steps = gr.Checkbox(label="Override `Sampling Steps` to the same value as `Decode steps`?", value=True)
|
||||
st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50)
|
||||
|
||||
override_strength = gr.Checkbox(label="Override `Denoising strength` to 1?", value=True)
|
||||
|
||||
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
|
||||
randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
|
||||
sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False)
|
||||
return [original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment]
|
||||
|
||||
def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment):
|
||||
p.batch_size = 1
|
||||
p.batch_count = 1
|
||||
return [
|
||||
info,
|
||||
override_sampler,
|
||||
override_prompt, original_prompt, original_negative_prompt,
|
||||
override_steps, st,
|
||||
override_strength,
|
||||
cfg, randomness, sigma_adjustment,
|
||||
]
|
||||
|
||||
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
|
||||
# Override
|
||||
if override_sampler:
|
||||
p.sampler_index = [sampler.name for sampler in sd_samplers.samplers].index("Euler")
|
||||
if override_prompt:
|
||||
p.prompt = original_prompt
|
||||
p.negative_prompt = original_negative_prompt
|
||||
if override_steps:
|
||||
p.steps = st
|
||||
if override_strength:
|
||||
p.denoising_strength = 1.0
|
||||
|
||||
|
||||
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
@ -155,11 +182,11 @@ class Script(scripts.Script):
|
||||
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
|
||||
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
|
||||
|
||||
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
|
||||
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
|
||||
|
||||
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
|
||||
|
||||
sampler = samplers[p.sampler_index].constructor(p.sd_model)
|
||||
sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
|
||||
|
||||
sigmas = sampler.model_wrap.get_sigmas(p.steps)
|
||||
|
||||
|
@ -38,6 +38,7 @@ class Script(scripts.Script):
|
||||
|
||||
grids = []
|
||||
all_images = []
|
||||
original_init_image = p.init_images
|
||||
state.job_count = loops * batch_count
|
||||
|
||||
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
||||
@ -45,6 +46,9 @@ class Script(scripts.Script):
|
||||
for n in range(batch_count):
|
||||
history = []
|
||||
|
||||
# Reset to original init image at the start of each batch
|
||||
p.init_images = original_init_image
|
||||
|
||||
for i in range(loops):
|
||||
p.n_iter = 1
|
||||
p.batch_size = 1
|
||||
|
@ -85,8 +85,11 @@ def get_matched_noise(_np_src_image, np_mask_rgb, noise_q=1, color_variation=0.0
|
||||
src_dist = np.absolute(src_fft)
|
||||
src_phase = src_fft / src_dist
|
||||
|
||||
# create a generator with a static seed to make outpainting deterministic / only follow global seed
|
||||
rng = np.random.default_rng(0)
|
||||
|
||||
noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
|
||||
noise_rgb = np.random.random_sample((width, height, num_channels))
|
||||
noise_rgb = rng.random((width, height, num_channels))
|
||||
noise_grey = (np.sum(noise_rgb, axis=2) / 3.)
|
||||
noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
|
||||
for c in range(num_channels):
|
||||
|
@ -10,7 +10,6 @@ from modules.processing import Processed, process_images
|
||||
from PIL import Image
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
|
||||
|
||||
class Script(scripts.Script):
|
||||
def title(self):
|
||||
return "Prompts from file or textbox"
|
||||
@ -67,6 +66,9 @@ class Script(scripts.Script):
|
||||
"do_not_save_grid": process_boolean_tag
|
||||
}
|
||||
|
||||
def on_show(self, checkbox_txt, file, prompt_txt):
|
||||
return [ gr.Checkbox.update(visible = True), gr.File.update(visible = not checkbox_txt), gr.TextArea.update(visible = checkbox_txt) ]
|
||||
|
||||
def run(self, p, checkbox_txt, data: bytes, prompt_txt: str):
|
||||
if (checkbox_txt):
|
||||
lines = [x.strip() for x in prompt_txt.splitlines()]
|
||||
|
@ -34,7 +34,11 @@ class Script(scripts.Script):
|
||||
seed = p.seed
|
||||
|
||||
init_img = p.init_images[0]
|
||||
img = upscaler.scaler.upscale(init_img, 2, upscaler.data_path)
|
||||
|
||||
if(upscaler.name != "None"):
|
||||
img = upscaler.scaler.upscale(init_img, 2, upscaler.data_path)
|
||||
else:
|
||||
img = init_img
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
|
@ -1,7 +1,9 @@
|
||||
from collections import namedtuple
|
||||
from copy import copy
|
||||
from itertools import permutations, chain
|
||||
import random
|
||||
|
||||
import csv
|
||||
from io import StringIO
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
@ -9,7 +11,8 @@ import modules.scripts as scripts
|
||||
import gradio as gr
|
||||
|
||||
from modules import images
|
||||
from modules.processing import process_images, Processed
|
||||
from modules.hypernetworks import hypernetwork
|
||||
from modules.processing import process_images, Processed, get_correct_sampler, StableDiffusionProcessingTxt2Img
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
import modules.sd_samplers
|
||||
@ -25,31 +28,101 @@ def apply_field(field):
|
||||
|
||||
|
||||
def apply_prompt(p, x, xs):
|
||||
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
|
||||
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
|
||||
|
||||
p.prompt = p.prompt.replace(xs[0], x)
|
||||
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
|
||||
|
||||
|
||||
samplers_dict = {}
|
||||
for i, sampler in enumerate(modules.sd_samplers.samplers):
|
||||
samplers_dict[sampler.name.lower()] = i
|
||||
for alias in sampler.aliases:
|
||||
samplers_dict[alias.lower()] = i
|
||||
def apply_order(p, x, xs):
|
||||
token_order = []
|
||||
|
||||
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
|
||||
for token in x:
|
||||
token_order.append((p.prompt.find(token), token))
|
||||
|
||||
token_order.sort(key=lambda t: t[0])
|
||||
|
||||
prompt_parts = []
|
||||
|
||||
# Split the prompt up, taking out the tokens
|
||||
for _, token in token_order:
|
||||
n = p.prompt.find(token)
|
||||
prompt_parts.append(p.prompt[0:n])
|
||||
p.prompt = p.prompt[n + len(token):]
|
||||
|
||||
# Rebuild the prompt with the tokens in the order we want
|
||||
prompt_tmp = ""
|
||||
for idx, part in enumerate(prompt_parts):
|
||||
prompt_tmp += part
|
||||
prompt_tmp += x[idx]
|
||||
p.prompt = prompt_tmp + p.prompt
|
||||
|
||||
|
||||
def build_samplers_dict(p):
|
||||
samplers_dict = {}
|
||||
for i, sampler in enumerate(get_correct_sampler(p)):
|
||||
samplers_dict[sampler.name.lower()] = i
|
||||
for alias in sampler.aliases:
|
||||
samplers_dict[alias.lower()] = i
|
||||
return samplers_dict
|
||||
|
||||
|
||||
def apply_sampler(p, x, xs):
|
||||
sampler_index = samplers_dict.get(x.lower(), None)
|
||||
sampler_index = build_samplers_dict(p).get(x.lower(), None)
|
||||
if sampler_index is None:
|
||||
raise RuntimeError(f"Unknown sampler: {x}")
|
||||
|
||||
p.sampler_index = sampler_index
|
||||
|
||||
|
||||
def confirm_samplers(p, xs):
|
||||
samplers_dict = build_samplers_dict(p)
|
||||
for x in xs:
|
||||
if x.lower() not in samplers_dict.keys():
|
||||
raise RuntimeError(f"Unknown sampler: {x}")
|
||||
|
||||
|
||||
def apply_checkpoint(p, x, xs):
|
||||
info = modules.sd_models.get_closet_checkpoint_match(x)
|
||||
assert info is not None, f'Checkpoint for {x} not found'
|
||||
if info is None:
|
||||
raise RuntimeError(f"Unknown checkpoint: {x}")
|
||||
modules.sd_models.reload_model_weights(shared.sd_model, info)
|
||||
|
||||
|
||||
def confirm_checkpoints(p, xs):
|
||||
for x in xs:
|
||||
if modules.sd_models.get_closet_checkpoint_match(x) is None:
|
||||
raise RuntimeError(f"Unknown checkpoint: {x}")
|
||||
|
||||
|
||||
def apply_hypernetwork(p, x, xs):
|
||||
if x.lower() in ["", "none"]:
|
||||
name = None
|
||||
else:
|
||||
name = hypernetwork.find_closest_hypernetwork_name(x)
|
||||
if not name:
|
||||
raise RuntimeError(f"Unknown hypernetwork: {x}")
|
||||
hypernetwork.load_hypernetwork(name)
|
||||
|
||||
|
||||
def apply_hypernetwork_strength(p, x, xs):
|
||||
hypernetwork.apply_strength(x)
|
||||
|
||||
|
||||
def confirm_hypernetworks(p, xs):
|
||||
for x in xs:
|
||||
if x.lower() in ["", "none"]:
|
||||
continue
|
||||
if not hypernetwork.find_closest_hypernetwork_name(x):
|
||||
raise RuntimeError(f"Unknown hypernetwork: {x}")
|
||||
|
||||
|
||||
def apply_clip_skip(p, x, xs):
|
||||
opts.data["CLIP_stop_at_last_layers"] = x
|
||||
|
||||
|
||||
def format_value_add_label(p, opt, x):
|
||||
if type(x) == float:
|
||||
x = round(x, 8)
|
||||
@ -60,46 +133,64 @@ def format_value_add_label(p, opt, x):
|
||||
def format_value(p, opt, x):
|
||||
if type(x) == float:
|
||||
x = round(x, 8)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def format_value_join_list(p, opt, x):
|
||||
return ", ".join(x)
|
||||
|
||||
|
||||
def do_nothing(p, x, xs):
|
||||
pass
|
||||
|
||||
|
||||
def format_nothing(p, opt, x):
|
||||
return ""
|
||||
|
||||
|
||||
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value"])
|
||||
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value"])
|
||||
def str_permutations(x):
|
||||
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
|
||||
return x
|
||||
|
||||
|
||||
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
|
||||
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
|
||||
|
||||
|
||||
axis_options = [
|
||||
AxisOption("Nothing", str, do_nothing, format_nothing),
|
||||
AxisOption("Seed", int, apply_field("seed"), format_value_add_label),
|
||||
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label),
|
||||
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label),
|
||||
AxisOption("Steps", int, apply_field("steps"), format_value_add_label),
|
||||
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label),
|
||||
AxisOption("Prompt S/R", str, apply_prompt, format_value),
|
||||
AxisOption("Sampler", str, apply_sampler, format_value),
|
||||
AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
|
||||
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
|
||||
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
|
||||
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
|
||||
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label),
|
||||
AxisOption("Eta", float, apply_field("eta"), format_value_add_label),
|
||||
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
|
||||
AxisOption("Nothing", str, do_nothing, format_nothing, None),
|
||||
AxisOption("Seed", int, apply_field("seed"), format_value_add_label, None),
|
||||
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label, None),
|
||||
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label, None),
|
||||
AxisOption("Steps", int, apply_field("steps"), format_value_add_label, None),
|
||||
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label, None),
|
||||
AxisOption("Prompt S/R", str, apply_prompt, format_value, None),
|
||||
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list, None),
|
||||
AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers),
|
||||
AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints),
|
||||
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks),
|
||||
AxisOption("Hypernet str.", float, apply_hypernetwork_strength, format_value_add_label, None),
|
||||
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None),
|
||||
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None),
|
||||
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None),
|
||||
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label, None),
|
||||
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
|
||||
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
|
||||
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
|
||||
]
|
||||
|
||||
|
||||
def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend):
|
||||
res = []
|
||||
|
||||
def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_images):
|
||||
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
|
||||
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
|
||||
|
||||
first_pocessed = None
|
||||
# Temporary list of all the images that are generated to be populated into the grid.
|
||||
# Will be filled with empty images for any individual step that fails to process properly
|
||||
image_cache = []
|
||||
|
||||
processed_result = None
|
||||
cell_mode = "P"
|
||||
cell_size = (1,1)
|
||||
|
||||
state.job_count = len(xs) * len(ys) * p.n_iter
|
||||
|
||||
@ -107,22 +198,39 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend):
|
||||
for ix, x in enumerate(xs):
|
||||
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
|
||||
|
||||
processed = cell(x, y)
|
||||
if first_pocessed is None:
|
||||
first_pocessed = processed
|
||||
|
||||
processed:Processed = cell(x, y)
|
||||
try:
|
||||
res.append(processed.images[0])
|
||||
# this dereference will throw an exception if the image was not processed
|
||||
# (this happens in cases such as if the user stops the process from the UI)
|
||||
processed_image = processed.images[0]
|
||||
|
||||
if processed_result is None:
|
||||
# Use our first valid processed result as a template container to hold our full results
|
||||
processed_result = copy(processed)
|
||||
cell_mode = processed_image.mode
|
||||
cell_size = processed_image.size
|
||||
processed_result.images = [Image.new(cell_mode, cell_size)]
|
||||
|
||||
image_cache.append(processed_image)
|
||||
if include_lone_images:
|
||||
processed_result.images.append(processed_image)
|
||||
processed_result.all_prompts.append(processed.prompt)
|
||||
processed_result.all_seeds.append(processed.seed)
|
||||
processed_result.infotexts.append(processed.infotexts[0])
|
||||
except:
|
||||
res.append(Image.new(res[0].mode, res[0].size))
|
||||
image_cache.append(Image.new(cell_mode, cell_size))
|
||||
|
||||
grid = images.image_grid(res, rows=len(ys))
|
||||
if not processed_result:
|
||||
print("Unexpected error: draw_xy_grid failed to return even a single processed image")
|
||||
return Processed()
|
||||
|
||||
grid = images.image_grid(image_cache, rows=len(ys))
|
||||
if draw_legend:
|
||||
grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts)
|
||||
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
|
||||
|
||||
first_pocessed.images = [grid]
|
||||
processed_result.images[0] = grid
|
||||
|
||||
return first_pocessed
|
||||
return processed_result
|
||||
|
||||
|
||||
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
|
||||
@ -143,23 +251,30 @@ class Script(scripts.Script):
|
||||
x_values = gr.Textbox(label="X values", visible=False, lines=1)
|
||||
|
||||
with gr.Row():
|
||||
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[4].label, visible=False, type="index", elem_id="y_type")
|
||||
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[0].label, visible=False, type="index", elem_id="y_type")
|
||||
y_values = gr.Textbox(label="Y values", visible=False, lines=1)
|
||||
|
||||
draw_legend = gr.Checkbox(label='Draw legend', value=True)
|
||||
include_lone_images = gr.Checkbox(label='Include Separate Images', value=False)
|
||||
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
|
||||
|
||||
return [x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds]
|
||||
return [x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds]
|
||||
|
||||
def run(self, p, x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds):
|
||||
modules.processing.fix_seed(p)
|
||||
p.batch_size = 1
|
||||
def run(self, p, x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds):
|
||||
if not no_fixed_seeds:
|
||||
modules.processing.fix_seed(p)
|
||||
|
||||
if not opts.return_grid:
|
||||
p.batch_size = 1
|
||||
|
||||
|
||||
CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
|
||||
|
||||
def process_axis(opt, vals):
|
||||
if opt.label == 'Nothing':
|
||||
return [0]
|
||||
|
||||
valslist = [x.strip() for x in vals.split(",")]
|
||||
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))]
|
||||
|
||||
if opt.type == int:
|
||||
valslist_ext = []
|
||||
@ -168,7 +283,6 @@ class Script(scripts.Script):
|
||||
m = re_range.fullmatch(val)
|
||||
mc = re_range_count.fullmatch(val)
|
||||
if m is not None:
|
||||
|
||||
start = int(m.group(1))
|
||||
end = int(m.group(2))+1
|
||||
step = int(m.group(3)) if m.group(3) is not None else 1
|
||||
@ -206,9 +320,15 @@ class Script(scripts.Script):
|
||||
valslist_ext.append(val)
|
||||
|
||||
valslist = valslist_ext
|
||||
elif opt.type == str_permutations:
|
||||
valslist = list(permutations(valslist))
|
||||
|
||||
valslist = [opt.type(x) for x in valslist]
|
||||
|
||||
# Confirm options are valid before starting
|
||||
if opt.confirm:
|
||||
opt.confirm(p, valslist)
|
||||
|
||||
return valslist
|
||||
|
||||
x_opt = axis_options[x_type]
|
||||
@ -218,7 +338,7 @@ class Script(scripts.Script):
|
||||
ys = process_axis(y_opt, y_values)
|
||||
|
||||
def fix_axis_seeds(axis_opt, axis_list):
|
||||
if axis_opt.label == 'Seed':
|
||||
if axis_opt.label in ['Seed','Var. seed']:
|
||||
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
|
||||
else:
|
||||
return axis_list
|
||||
@ -234,6 +354,9 @@ class Script(scripts.Script):
|
||||
else:
|
||||
total_steps = p.steps * len(xs) * len(ys)
|
||||
|
||||
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
|
||||
total_steps *= 2
|
||||
|
||||
print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})")
|
||||
shared.total_tqdm.updateTotal(total_steps * p.n_iter)
|
||||
|
||||
@ -251,7 +374,8 @@ class Script(scripts.Script):
|
||||
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
|
||||
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
|
||||
cell=cell,
|
||||
draw_legend=draw_legend
|
||||
draw_legend=draw_legend,
|
||||
include_lone_images=include_lone_images
|
||||
)
|
||||
|
||||
if opts.grid_save:
|
||||
@ -260,4 +384,10 @@ class Script(scripts.Script):
|
||||
# restore checkpoint in case it was changed by axes
|
||||
modules.sd_models.reload_model_weights(shared.sd_model)
|
||||
|
||||
hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
|
||||
hypernetwork.apply_strength()
|
||||
|
||||
|
||||
opts.data["CLIP_stop_at_last_layers"] = CLIP_stop_at_last_layers
|
||||
|
||||
return processed
|
||||
|
150
style.css
150
style.css
@ -1,3 +1,28 @@
|
||||
.container {
|
||||
max-width: 100%;
|
||||
}
|
||||
|
||||
#txt2img_token_counter {
|
||||
height: 0px;
|
||||
}
|
||||
|
||||
#img2img_token_counter {
|
||||
height: 0px;
|
||||
}
|
||||
|
||||
#sh{
|
||||
min-width: 2em;
|
||||
min-height: 2em;
|
||||
max-width: 2em;
|
||||
max-height: 2em;
|
||||
flex-grow: 0;
|
||||
padding-left: 0.25em;
|
||||
padding-right: 0.25em;
|
||||
margin: 0.1em 0;
|
||||
opacity: 0%;
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
.output-html p {margin: 0 0.5em;}
|
||||
|
||||
.row > *,
|
||||
@ -103,7 +128,12 @@
|
||||
|
||||
#style_apply, #style_create, #interrogate{
|
||||
margin: 0.75em 0.25em 0.25em 0.25em;
|
||||
min-width: 3em;
|
||||
min-width: 5em;
|
||||
}
|
||||
|
||||
#style_apply, #style_create, #deepbooru{
|
||||
margin: 0.75em 0.25em 0.25em 0.25em;
|
||||
min-width: 5em;
|
||||
}
|
||||
|
||||
#style_pos_col, #style_neg_col{
|
||||
@ -137,14 +167,6 @@ button{
|
||||
align-self: stretch !important;
|
||||
}
|
||||
|
||||
#prompt, #negative_prompt{
|
||||
border: none !important;
|
||||
}
|
||||
#prompt textarea, #negative_prompt textarea{
|
||||
border: none !important;
|
||||
}
|
||||
|
||||
|
||||
#img2maskimg .h-60{
|
||||
height: 30rem;
|
||||
}
|
||||
@ -157,7 +179,7 @@ button{
|
||||
max-width: 10em;
|
||||
}
|
||||
|
||||
#txt2img_preview, #img2img_preview{
|
||||
#txt2img_preview, #img2img_preview, #ti_preview{
|
||||
position: absolute;
|
||||
width: 320px;
|
||||
left: 0;
|
||||
@ -172,18 +194,18 @@ button{
|
||||
}
|
||||
|
||||
@media screen and (min-width: 768px) {
|
||||
#txt2img_preview, #img2img_preview {
|
||||
#txt2img_preview, #img2img_preview, #ti_preview {
|
||||
position: absolute;
|
||||
}
|
||||
}
|
||||
|
||||
@media screen and (max-width: 767px) {
|
||||
#txt2img_preview, #img2img_preview {
|
||||
#txt2img_preview, #img2img_preview, #ti_preview {
|
||||
position: relative;
|
||||
}
|
||||
}
|
||||
|
||||
#txt2img_preview div.left-0.top-0, #img2img_preview div.left-0.top-0{
|
||||
#txt2img_preview div.left-0.top-0, #img2img_preview div.left-0.top-0, #ti_preview div.left-0.top-0{
|
||||
display: none;
|
||||
}
|
||||
|
||||
@ -198,6 +220,8 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
|
||||
border-top: 1px solid #eee;
|
||||
border-left: 1px solid #eee;
|
||||
border-right: 1px solid #eee;
|
||||
|
||||
z-index: 300;
|
||||
}
|
||||
|
||||
.dark fieldset span.text-gray-500, .dark .gr-block.gr-box span.text-gray-500, .dark label.block span{
|
||||
@ -210,6 +234,7 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
|
||||
#settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{
|
||||
position: relative;
|
||||
border: none;
|
||||
margin-right: 8em;
|
||||
}
|
||||
|
||||
.gr-panel div.flex-col div.justify-between label span{
|
||||
@ -247,7 +272,7 @@ input[type="range"]{
|
||||
#txt2img_negative_prompt, #img2img_negative_prompt{
|
||||
}
|
||||
|
||||
#txt2img_progressbar, #img2img_progressbar{
|
||||
#txt2img_progressbar, #img2img_progressbar, #ti_progressbar{
|
||||
position: absolute;
|
||||
z-index: 1000;
|
||||
right: 0;
|
||||
@ -393,13 +418,106 @@ input[type="range"]{
|
||||
|
||||
#txt2img_interrupt, #img2img_interrupt{
|
||||
position: absolute;
|
||||
width: 100%;
|
||||
width: 50%;
|
||||
height: 72px;
|
||||
background: #b4c0cc;
|
||||
border-radius: 8px;
|
||||
border-radius: 0px;
|
||||
display: none;
|
||||
}
|
||||
|
||||
#txt2img_skip, #img2img_skip{
|
||||
position: absolute;
|
||||
width: 50%;
|
||||
right: 0px;
|
||||
height: 72px;
|
||||
background: #b4c0cc;
|
||||
border-radius: 0px;
|
||||
display: none;
|
||||
}
|
||||
|
||||
.red {
|
||||
color: red;
|
||||
}
|
||||
|
||||
.gallery-item {
|
||||
--tw-bg-opacity: 0 !important;
|
||||
}
|
||||
|
||||
#img2img_image div.h-60{
|
||||
height: 480px;
|
||||
}
|
||||
|
||||
#context-menu{
|
||||
z-index:9999;
|
||||
position:absolute;
|
||||
display:block;
|
||||
padding:0px 0;
|
||||
border:2px solid #a55000;
|
||||
border-radius:8px;
|
||||
box-shadow:1px 1px 2px #CE6400;
|
||||
width: 200px;
|
||||
}
|
||||
|
||||
.context-menu-items{
|
||||
list-style: none;
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
.context-menu-items a{
|
||||
display:block;
|
||||
padding:5px;
|
||||
cursor:pointer;
|
||||
}
|
||||
|
||||
.context-menu-items a:hover{
|
||||
background: #a55000;
|
||||
}
|
||||
|
||||
#quicksettings {
|
||||
gap: 0.4em;
|
||||
}
|
||||
|
||||
#quicksettings > div{
|
||||
border: none;
|
||||
background: none;
|
||||
flex: unset;
|
||||
gap: 0.5em;
|
||||
}
|
||||
|
||||
#quicksettings > div > div{
|
||||
max-width: 32em;
|
||||
min-width: 24em;
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork{
|
||||
max-width: 2.5em;
|
||||
min-width: 2.5em;
|
||||
height: 2.4em;
|
||||
}
|
||||
|
||||
|
||||
canvas[key="mask"] {
|
||||
z-index: 12 !important;
|
||||
filter: invert();
|
||||
mix-blend-mode: multiply;
|
||||
pointer-events: none;
|
||||
}
|
||||
|
||||
|
||||
/* gradio 3.4.1 stuff for editable scrollbar values */
|
||||
.gr-box > div > div > input.gr-text-input{
|
||||
position: absolute;
|
||||
right: 0.5em;
|
||||
top: -0.6em;
|
||||
z-index: 200;
|
||||
width: 8em;
|
||||
}
|
||||
#quicksettings .gr-box > div > div > input.gr-text-input {
|
||||
top: -1.12em;
|
||||
}
|
||||
|
||||
.row.gr-compact{
|
||||
overflow: visible;
|
||||
}
|
||||
|
27
textual_inversion_templates/hypernetwork.txt
Normal file
27
textual_inversion_templates/hypernetwork.txt
Normal file
@ -0,0 +1,27 @@
|
||||
a photo of a [filewords]
|
||||
a rendering of a [filewords]
|
||||
a cropped photo of the [filewords]
|
||||
the photo of a [filewords]
|
||||
a photo of a clean [filewords]
|
||||
a photo of a dirty [filewords]
|
||||
a dark photo of the [filewords]
|
||||
a photo of my [filewords]
|
||||
a photo of the cool [filewords]
|
||||
a close-up photo of a [filewords]
|
||||
a bright photo of the [filewords]
|
||||
a cropped photo of a [filewords]
|
||||
a photo of the [filewords]
|
||||
a good photo of the [filewords]
|
||||
a photo of one [filewords]
|
||||
a close-up photo of the [filewords]
|
||||
a rendition of the [filewords]
|
||||
a photo of the clean [filewords]
|
||||
a rendition of a [filewords]
|
||||
a photo of a nice [filewords]
|
||||
a good photo of a [filewords]
|
||||
a photo of the nice [filewords]
|
||||
a photo of the small [filewords]
|
||||
a photo of the weird [filewords]
|
||||
a photo of the large [filewords]
|
||||
a photo of a cool [filewords]
|
||||
a photo of a small [filewords]
|
1
textual_inversion_templates/none.txt
Normal file
1
textual_inversion_templates/none.txt
Normal file
@ -0,0 +1 @@
|
||||
picture
|
19
textual_inversion_templates/style.txt
Normal file
19
textual_inversion_templates/style.txt
Normal file
@ -0,0 +1,19 @@
|
||||
a painting, art by [name]
|
||||
a rendering, art by [name]
|
||||
a cropped painting, art by [name]
|
||||
the painting, art by [name]
|
||||
a clean painting, art by [name]
|
||||
a dirty painting, art by [name]
|
||||
a dark painting, art by [name]
|
||||
a picture, art by [name]
|
||||
a cool painting, art by [name]
|
||||
a close-up painting, art by [name]
|
||||
a bright painting, art by [name]
|
||||
a cropped painting, art by [name]
|
||||
a good painting, art by [name]
|
||||
a close-up painting, art by [name]
|
||||
a rendition, art by [name]
|
||||
a nice painting, art by [name]
|
||||
a small painting, art by [name]
|
||||
a weird painting, art by [name]
|
||||
a large painting, art by [name]
|
19
textual_inversion_templates/style_filewords.txt
Normal file
19
textual_inversion_templates/style_filewords.txt
Normal file
@ -0,0 +1,19 @@
|
||||
a painting of [filewords], art by [name]
|
||||
a rendering of [filewords], art by [name]
|
||||
a cropped painting of [filewords], art by [name]
|
||||
the painting of [filewords], art by [name]
|
||||
a clean painting of [filewords], art by [name]
|
||||
a dirty painting of [filewords], art by [name]
|
||||
a dark painting of [filewords], art by [name]
|
||||
a picture of [filewords], art by [name]
|
||||
a cool painting of [filewords], art by [name]
|
||||
a close-up painting of [filewords], art by [name]
|
||||
a bright painting of [filewords], art by [name]
|
||||
a cropped painting of [filewords], art by [name]
|
||||
a good painting of [filewords], art by [name]
|
||||
a close-up painting of [filewords], art by [name]
|
||||
a rendition of [filewords], art by [name]
|
||||
a nice painting of [filewords], art by [name]
|
||||
a small painting of [filewords], art by [name]
|
||||
a weird painting of [filewords], art by [name]
|
||||
a large painting of [filewords], art by [name]
|
27
textual_inversion_templates/subject.txt
Normal file
27
textual_inversion_templates/subject.txt
Normal file
@ -0,0 +1,27 @@
|
||||
a photo of a [name]
|
||||
a rendering of a [name]
|
||||
a cropped photo of the [name]
|
||||
the photo of a [name]
|
||||
a photo of a clean [name]
|
||||
a photo of a dirty [name]
|
||||
a dark photo of the [name]
|
||||
a photo of my [name]
|
||||
a photo of the cool [name]
|
||||
a close-up photo of a [name]
|
||||
a bright photo of the [name]
|
||||
a cropped photo of a [name]
|
||||
a photo of the [name]
|
||||
a good photo of the [name]
|
||||
a photo of one [name]
|
||||
a close-up photo of the [name]
|
||||
a rendition of the [name]
|
||||
a photo of the clean [name]
|
||||
a rendition of a [name]
|
||||
a photo of a nice [name]
|
||||
a good photo of a [name]
|
||||
a photo of the nice [name]
|
||||
a photo of the small [name]
|
||||
a photo of the weird [name]
|
||||
a photo of the large [name]
|
||||
a photo of a cool [name]
|
||||
a photo of a small [name]
|
27
textual_inversion_templates/subject_filewords.txt
Normal file
27
textual_inversion_templates/subject_filewords.txt
Normal file
@ -0,0 +1,27 @@
|
||||
a photo of a [name], [filewords]
|
||||
a rendering of a [name], [filewords]
|
||||
a cropped photo of the [name], [filewords]
|
||||
the photo of a [name], [filewords]
|
||||
a photo of a clean [name], [filewords]
|
||||
a photo of a dirty [name], [filewords]
|
||||
a dark photo of the [name], [filewords]
|
||||
a photo of my [name], [filewords]
|
||||
a photo of the cool [name], [filewords]
|
||||
a close-up photo of a [name], [filewords]
|
||||
a bright photo of the [name], [filewords]
|
||||
a cropped photo of a [name], [filewords]
|
||||
a photo of the [name], [filewords]
|
||||
a good photo of the [name], [filewords]
|
||||
a photo of one [name], [filewords]
|
||||
a close-up photo of the [name], [filewords]
|
||||
a rendition of the [name], [filewords]
|
||||
a photo of the clean [name], [filewords]
|
||||
a rendition of a [name], [filewords]
|
||||
a photo of a nice [name], [filewords]
|
||||
a good photo of a [name], [filewords]
|
||||
a photo of the nice [name], [filewords]
|
||||
a photo of the small [name], [filewords]
|
||||
a photo of the weird [name], [filewords]
|
||||
a photo of the large [name], [filewords]
|
||||
a photo of a cool [name], [filewords]
|
||||
a photo of a small [name], [filewords]
|
Binary file not shown.
Before Width: | Height: | Size: 526 KiB After Width: | Height: | Size: 329 KiB |
99
webui.py
99
webui.py
@ -1,38 +1,37 @@
|
||||
import os
|
||||
import threading
|
||||
|
||||
from modules import devices
|
||||
from modules.paths import script_path
|
||||
import time
|
||||
import importlib
|
||||
import signal
|
||||
import threading
|
||||
import modules.paths
|
||||
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
|
||||
from modules.paths import script_path
|
||||
|
||||
from modules import devices, sd_samplers
|
||||
import modules.codeformer_model as codeformer
|
||||
import modules.esrgan_model as esrgan
|
||||
import modules.bsrgan_model as bsrgan
|
||||
import modules.extras
|
||||
import modules.face_restoration
|
||||
import modules.gfpgan_model as gfpgan
|
||||
import modules.img2img
|
||||
import modules.ldsr_model as ldsr
|
||||
|
||||
import modules.lowvram
|
||||
import modules.realesrgan_model as realesrgan
|
||||
import modules.paths
|
||||
import modules.scripts
|
||||
import modules.sd_hijack
|
||||
import modules.sd_models
|
||||
import modules.shared as shared
|
||||
import modules.swinir_model as swinir
|
||||
import modules.txt2img
|
||||
|
||||
import modules.ui
|
||||
from modules import devices
|
||||
from modules import modelloader
|
||||
from modules.paths import script_path
|
||||
from modules.shared import cmd_opts
|
||||
import modules.hypernetworks.hypernetwork
|
||||
|
||||
|
||||
modelloader.cleanup_models()
|
||||
modules.sd_models.setup_model(cmd_opts.ckpt_dir)
|
||||
codeformer.setup_model(cmd_opts.codeformer_models_path)
|
||||
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
||||
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
|
||||
modelloader.load_upscalers()
|
||||
queue_lock = threading.Lock()
|
||||
|
||||
|
||||
@ -46,7 +45,7 @@ def wrap_queued_call(func):
|
||||
return f
|
||||
|
||||
|
||||
def wrap_gradio_gpu_call(func):
|
||||
def wrap_gradio_gpu_call(func, extra_outputs=None):
|
||||
def f(*args, **kwargs):
|
||||
devices.torch_gc()
|
||||
|
||||
@ -57,7 +56,9 @@ def wrap_gradio_gpu_call(func):
|
||||
shared.state.current_latent = None
|
||||
shared.state.current_image = None
|
||||
shared.state.current_image_sampling_step = 0
|
||||
shared.state.skipped = False
|
||||
shared.state.interrupted = False
|
||||
shared.state.textinfo = None
|
||||
|
||||
with queue_lock:
|
||||
res = func(*args, **kwargs)
|
||||
@ -69,16 +70,27 @@ def wrap_gradio_gpu_call(func):
|
||||
|
||||
return res
|
||||
|
||||
return modules.ui.wrap_gradio_call(f)
|
||||
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
|
||||
|
||||
def initialize():
|
||||
modelloader.cleanup_models()
|
||||
modules.sd_models.setup_model()
|
||||
codeformer.setup_model(cmd_opts.codeformer_models_path)
|
||||
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
||||
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
|
||||
modelloader.load_upscalers()
|
||||
|
||||
modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
|
||||
modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
|
||||
|
||||
shared.sd_model = modules.sd_models.load_model()
|
||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
||||
shared.sd_model = modules.sd_models.load_model()
|
||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
||||
|
||||
|
||||
def webui():
|
||||
initialize()
|
||||
|
||||
# make the program just exit at ctrl+c without waiting for anything
|
||||
def sigint_handler(sig, frame):
|
||||
print(f'Interrupted with signal {sig} in {frame}')
|
||||
@ -86,22 +98,39 @@ def webui():
|
||||
|
||||
signal.signal(signal.SIGINT, sigint_handler)
|
||||
|
||||
demo = modules.ui.create_ui(
|
||||
txt2img=wrap_gradio_gpu_call(modules.txt2img.txt2img),
|
||||
img2img=wrap_gradio_gpu_call(modules.img2img.img2img),
|
||||
run_extras=wrap_gradio_gpu_call(modules.extras.run_extras),
|
||||
run_pnginfo=modules.extras.run_pnginfo,
|
||||
run_modelmerger=modules.extras.run_modelmerger
|
||||
)
|
||||
while 1:
|
||||
|
||||
demo.launch(
|
||||
share=cmd_opts.share,
|
||||
server_name="0.0.0.0" if cmd_opts.listen else None,
|
||||
server_port=cmd_opts.port,
|
||||
debug=cmd_opts.gradio_debug,
|
||||
auth=[tuple(cred.split(':')) for cred in cmd_opts.gradio_auth.strip('"').split(',')] if cmd_opts.gradio_auth else None,
|
||||
inbrowser=cmd_opts.autolaunch,
|
||||
)
|
||||
demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
|
||||
|
||||
app, local_url, share_url = demo.launch(
|
||||
share=cmd_opts.share,
|
||||
server_name="0.0.0.0" if cmd_opts.listen else None,
|
||||
server_port=cmd_opts.port,
|
||||
debug=cmd_opts.gradio_debug,
|
||||
auth=[tuple(cred.split(':')) for cred in cmd_opts.gradio_auth.strip('"').split(',')] if cmd_opts.gradio_auth else None,
|
||||
inbrowser=cmd_opts.autolaunch,
|
||||
prevent_thread_lock=True
|
||||
)
|
||||
|
||||
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
||||
|
||||
while 1:
|
||||
time.sleep(0.5)
|
||||
if getattr(demo, 'do_restart', False):
|
||||
time.sleep(0.5)
|
||||
demo.close()
|
||||
time.sleep(0.5)
|
||||
break
|
||||
|
||||
sd_samplers.set_samplers()
|
||||
|
||||
print('Reloading Custom Scripts')
|
||||
modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
|
||||
print('Reloading modules: modules.ui')
|
||||
importlib.reload(modules.ui)
|
||||
print('Refreshing Model List')
|
||||
modules.sd_models.list_models()
|
||||
print('Restarting Gradio')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user