validate textual inversion embeddings

This commit is contained in:
Vladimir Mandic 2022-12-31 11:27:02 -05:00 committed by GitHub
parent f34c734172
commit f55ac33d44
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 41 additions and 7 deletions

View File

@ -325,6 +325,9 @@ def load_model(checkpoint_info=None):
script_callbacks.model_loaded_callback(sd_model) script_callbacks.model_loaded_callback(sd_model)
print("Model loaded.") print("Model loaded.")
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload = True) # Reload embeddings after model load as they may or may not fit the model
return sd_model return sd_model

View File

@ -23,6 +23,8 @@ class Embedding:
self.vec = vec self.vec = vec
self.name = name self.name = name
self.step = step self.step = step
self.shape = None
self.vectors = 0
self.cached_checksum = None self.cached_checksum = None
self.sd_checkpoint = None self.sd_checkpoint = None
self.sd_checkpoint_name = None self.sd_checkpoint_name = None
@ -57,8 +59,10 @@ class EmbeddingDatabase:
def __init__(self, embeddings_dir): def __init__(self, embeddings_dir):
self.ids_lookup = {} self.ids_lookup = {}
self.word_embeddings = {} self.word_embeddings = {}
self.skipped_embeddings = []
self.dir_mtime = None self.dir_mtime = None
self.embeddings_dir = embeddings_dir self.embeddings_dir = embeddings_dir
self.expected_shape = -1
def register_embedding(self, embedding, model): def register_embedding(self, embedding, model):
@ -75,14 +79,35 @@ class EmbeddingDatabase:
return embedding return embedding
def load_textual_inversion_embeddings(self): def get_expected_shape(self):
expected_shape = -1 # initialize with unknown
idx = torch.tensor(0).to(shared.device)
if expected_shape == -1:
try: # matches sd15 signature
first_embedding = shared.sd_model.cond_stage_model.wrapped.transformer.text_model.embeddings.token_embedding.wrapped(idx)
expected_shape = first_embedding.shape[0]
except:
pass
if expected_shape == -1:
try: # matches sd20 signature
first_embedding = shared.sd_model.cond_stage_model.wrapped.model.token_embedding.wrapped(idx)
expected_shape = first_embedding.shape[0]
except:
pass
if expected_shape == -1:
print('Could not determine expected embeddings shape from model')
return expected_shape
def load_textual_inversion_embeddings(self, force_reload = False):
mt = os.path.getmtime(self.embeddings_dir) mt = os.path.getmtime(self.embeddings_dir)
if self.dir_mtime is not None and mt <= self.dir_mtime: if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime:
return return
self.dir_mtime = mt self.dir_mtime = mt
self.ids_lookup.clear() self.ids_lookup.clear()
self.word_embeddings.clear() self.word_embeddings.clear()
self.skipped_embeddings = []
self.expected_shape = self.get_expected_shape()
def process_file(path, filename): def process_file(path, filename):
name = os.path.splitext(filename)[0] name = os.path.splitext(filename)[0]
@ -122,7 +147,14 @@ class EmbeddingDatabase:
embedding.step = data.get('step', None) embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None) embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
self.register_embedding(embedding, shared.sd_model) embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
if (self.expected_shape == -1) or (self.expected_shape == embedding.shape):
self.register_embedding(embedding, shared.sd_model)
else:
self.skipped_embeddings.append(name)
# print('Skipping embedding {name}: shape was {shape} expected {expected}'.format(name = name, shape = embedding.shape, expected = self.expected_shape))
for fn in os.listdir(self.embeddings_dir): for fn in os.listdir(self.embeddings_dir):
try: try:
@ -137,8 +169,9 @@ class EmbeddingDatabase:
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
continue continue
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.") print("Textual inversion embeddings {num} loaded: {val}".format(num = len(self.word_embeddings), val = ', '.join(self.word_embeddings.keys())))
print("Embeddings:", ', '.join(self.word_embeddings.keys())) if (len(self.skipped_embeddings) > 0):
print("Textual inversion embeddings {num} skipped: {val}".format(num = len(self.skipped_embeddings), val = ', '.join(self.skipped_embeddings)))
def find_embedding_at_position(self, tokens, offset): def find_embedding_at_position(self, tokens, offset):
token = tokens[offset] token = tokens[offset]

View File

@ -1157,8 +1157,6 @@ def create_ui():
with gr.Column(variant='panel'): with gr.Column(variant='panel'):
submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False) submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False)
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
with gr.Blocks(analytics_enabled=False) as train_interface: with gr.Blocks(analytics_enabled=False) as train_interface:
with gr.Row().style(equal_height=False): with gr.Row().style(equal_height=False):
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>") gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")