example API working with gradio

This commit is contained in:
arcticfaded 2022-10-17 19:10:36 +00:00
parent d42125baf6
commit f80e914ac4
3 changed files with 60 additions and 27 deletions

View File

@ -23,8 +23,13 @@ class Api:
app.add_api_route("/v1/txt2img", self.text2imgapi, methods=["POST"])
def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ):
p = StableDiffusionProcessingTxt2Img(**vars(txt2imgreq))
p.sd_model = shared.sd_model
populate = txt2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": 0,
}
)
p = StableDiffusionProcessingTxt2Img(**vars(populate))
# Override object param
processed = process_images(p)
b64images = []

View File

@ -5,6 +5,24 @@ from modules.processing import StableDiffusionProcessing, Processed, StableDiffu
import inspect
API_NOT_ALLOWED = [
"self",
"kwargs",
"sd_model",
"outpath_samples",
"outpath_grids",
"sampler_index",
"do_not_save_samples",
"do_not_save_grid",
"extra_generation_params",
"overlay_images",
"do_not_reload_embeddings",
"seed_enable_extras",
"prompt_for_display",
"sampler_noise_scheduler_override",
"ddim_discretize"
]
class ModelDef(BaseModel):
"""Assistance Class for Pydantic Dynamic Model Generation"""
@ -14,7 +32,7 @@ class ModelDef(BaseModel):
field_value: Any
class pydanticModelGenerator:
class PydanticModelGenerator:
"""
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
source_data is a snapshot of the default values produced by the class
@ -24,30 +42,33 @@ class pydanticModelGenerator:
def __init__(
self,
model_name: str = None,
source_data: {} = {},
params: Dict = {},
overrides: Dict = {},
optionals: Dict = {},
class_instance = None
):
def field_type_generator(k, v, overrides, optionals):
field_type = str if not overrides.get(k) else overrides[k]["type"]
if v is None:
field_type = Any
else:
field_type = type(v)
def field_type_generator(k, v):
# field_type = str if not overrides.get(k) else overrides[k]["type"]
# print(k, v.annotation, v.default)
field_type = v.annotation
return Optional[field_type]
def merge_class_params(class_):
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
parameters = {}
for classes in all_classes:
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
return parameters
self._model_name = model_name
self._json_data = source_data
self._class_data = merge_class_params(class_instance)
self._model_def = [
ModelDef(
field=underscore(k),
field_alias=k,
field_type=field_type_generator(k, v, overrides, optionals),
field_value=v
field_type=field_type_generator(k, v),
field_value=v.default
)
for (k,v) in source_data.items() if k in params
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
]
def generate_model(self):
@ -60,8 +81,7 @@ class pydanticModelGenerator:
}
DynamicModel = create_model(self._model_name, **fields)
DynamicModel.__config__.allow_population_by_field_name = True
DynamicModel.__config__.allow_mutation = True
return DynamicModel
StableDiffusionProcessingAPI = pydanticModelGenerator("StableDiffusionProcessing",
StableDiffusionProcessing().__dict__,
inspect.signature(StableDiffusionProcessing.__init__).parameters).generate_model()
StableDiffusionProcessingAPI = PydanticModelGenerator("StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img).generate_model()

View File

@ -9,6 +9,7 @@ from PIL import Image, ImageFilter, ImageOps
import random
import cv2
from skimage import exposure
from typing import Any, Dict, List, Optional
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram
@ -51,9 +52,15 @@ def get_correct_sampler(p):
return sd_samplers.samplers
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
return sd_samplers.samplers_for_img2img
elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
return sd_samplers.samplers
class StableDiffusionProcessing:
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None, do_not_reload_embeddings=False):
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str="", styles: List[str]=None, seed: int=-1, subseed: int=-1, subseed_strength: float=0, seed_resize_from_h: int=-1, seed_resize_from_w: int=-1, seed_enable_extras: bool=True, sampler_index: int=0, batch_size: int=1, n_iter: int=1, steps:int =50, cfg_scale:float=7.0, width:int=512, height:int=512, restore_faces:bool=False, tiling:bool=False, do_not_save_samples:bool=False, do_not_save_grid:bool=False, extra_generation_params: Dict[Any,Any]=None, overlay_images: Any=None, negative_prompt: str=None, eta: float =None, do_not_reload_embeddings: bool=False, denoising_strength: float = 0, ddim_discretize: str = "uniform", s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0):
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@ -86,10 +93,10 @@ class StableDiffusionProcessing:
self.denoising_strength: float = 0
self.sampler_noise_scheduler_override = None
self.ddim_discretize = opts.ddim_discretize
self.s_churn = opts.s_churn
self.s_tmin = opts.s_tmin
self.s_tmax = float('inf') # not representable as a standard ui option
self.s_noise = opts.s_noise
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = s_noise or opts.s_noise
if not seed_enable_extras:
self.subseed = -1
@ -97,6 +104,7 @@ class StableDiffusionProcessing:
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
def init(self, all_prompts, all_seeds, all_subseeds):
pass
@ -497,7 +505,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None
def __init__(self, enable_hr=False, denoising_strength=0.75, firstphase_width=0, firstphase_height=0, **kwargs):
def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs):
super().__init__(**kwargs)
self.enable_hr = enable_hr
self.denoising_strength = denoising_strength