diff --git a/modules/api/api.py b/modules/api/api.py index fd09d352..5e86c3bf 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -23,8 +23,13 @@ class Api: app.add_api_route("/v1/txt2img", self.text2imgapi, methods=["POST"]) def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): - p = StableDiffusionProcessingTxt2Img(**vars(txt2imgreq)) - p.sd_model = shared.sd_model + populate = txt2imgreq.copy(update={ # Override __init__ params + "sd_model": shared.sd_model, + "sampler_index": 0, + } + ) + p = StableDiffusionProcessingTxt2Img(**vars(populate)) + # Override object param processed = process_images(p) b64images = [] diff --git a/modules/api/processing.py b/modules/api/processing.py index e4df93c5..b6798241 100644 --- a/modules/api/processing.py +++ b/modules/api/processing.py @@ -5,6 +5,24 @@ from modules.processing import StableDiffusionProcessing, Processed, StableDiffu import inspect +API_NOT_ALLOWED = [ + "self", + "kwargs", + "sd_model", + "outpath_samples", + "outpath_grids", + "sampler_index", + "do_not_save_samples", + "do_not_save_grid", + "extra_generation_params", + "overlay_images", + "do_not_reload_embeddings", + "seed_enable_extras", + "prompt_for_display", + "sampler_noise_scheduler_override", + "ddim_discretize" +] + class ModelDef(BaseModel): """Assistance Class for Pydantic Dynamic Model Generation""" @@ -14,7 +32,7 @@ class ModelDef(BaseModel): field_value: Any -class pydanticModelGenerator: +class PydanticModelGenerator: """ Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: source_data is a snapshot of the default values produced by the class @@ -24,30 +42,33 @@ class pydanticModelGenerator: def __init__( self, model_name: str = None, - source_data: {} = {}, - params: Dict = {}, - overrides: Dict = {}, - optionals: Dict = {}, + class_instance = None ): - def field_type_generator(k, v, overrides, optionals): - field_type = str if not overrides.get(k) else overrides[k]["type"] - if v is None: - field_type = Any - else: - field_type = type(v) + def field_type_generator(k, v): + # field_type = str if not overrides.get(k) else overrides[k]["type"] + # print(k, v.annotation, v.default) + field_type = v.annotation return Optional[field_type] + def merge_class_params(class_): + all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) + parameters = {} + for classes in all_classes: + parameters = {**parameters, **inspect.signature(classes.__init__).parameters} + return parameters + + self._model_name = model_name - self._json_data = source_data + self._class_data = merge_class_params(class_instance) self._model_def = [ ModelDef( field=underscore(k), field_alias=k, - field_type=field_type_generator(k, v, overrides, optionals), - field_value=v + field_type=field_type_generator(k, v), + field_value=v.default ) - for (k,v) in source_data.items() if k in params + for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED ] def generate_model(self): @@ -60,8 +81,7 @@ class pydanticModelGenerator: } DynamicModel = create_model(self._model_name, **fields) DynamicModel.__config__.allow_population_by_field_name = True + DynamicModel.__config__.allow_mutation = True return DynamicModel -StableDiffusionProcessingAPI = pydanticModelGenerator("StableDiffusionProcessing", - StableDiffusionProcessing().__dict__, - inspect.signature(StableDiffusionProcessing.__init__).parameters).generate_model() +StableDiffusionProcessingAPI = PydanticModelGenerator("StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img).generate_model() diff --git a/modules/processing.py b/modules/processing.py index 4a7c6ccc..024a4fc3 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -9,6 +9,7 @@ from PIL import Image, ImageFilter, ImageOps import random import cv2 from skimage import exposure +from typing import Any, Dict, List, Optional import modules.sd_hijack from modules import devices, prompt_parser, masking, sd_samplers, lowvram @@ -51,9 +52,15 @@ def get_correct_sampler(p): return sd_samplers.samplers elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img): return sd_samplers.samplers_for_img2img + elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI): + return sd_samplers.samplers -class StableDiffusionProcessing: - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None, do_not_reload_embeddings=False): +class StableDiffusionProcessing(): + """ + The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing + + """ + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str="", styles: List[str]=None, seed: int=-1, subseed: int=-1, subseed_strength: float=0, seed_resize_from_h: int=-1, seed_resize_from_w: int=-1, seed_enable_extras: bool=True, sampler_index: int=0, batch_size: int=1, n_iter: int=1, steps:int =50, cfg_scale:float=7.0, width:int=512, height:int=512, restore_faces:bool=False, tiling:bool=False, do_not_save_samples:bool=False, do_not_save_grid:bool=False, extra_generation_params: Dict[Any,Any]=None, overlay_images: Any=None, negative_prompt: str=None, eta: float =None, do_not_reload_embeddings: bool=False, denoising_strength: float = 0, ddim_discretize: str = "uniform", s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0): self.sd_model = sd_model self.outpath_samples: str = outpath_samples self.outpath_grids: str = outpath_grids @@ -86,10 +93,10 @@ class StableDiffusionProcessing: self.denoising_strength: float = 0 self.sampler_noise_scheduler_override = None self.ddim_discretize = opts.ddim_discretize - self.s_churn = opts.s_churn - self.s_tmin = opts.s_tmin - self.s_tmax = float('inf') # not representable as a standard ui option - self.s_noise = opts.s_noise + self.s_churn = s_churn or opts.s_churn + self.s_tmin = s_tmin or opts.s_tmin + self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option + self.s_noise = s_noise or opts.s_noise if not seed_enable_extras: self.subseed = -1 @@ -97,6 +104,7 @@ class StableDiffusionProcessing: self.seed_resize_from_h = 0 self.seed_resize_from_w = 0 + def init(self, all_prompts, all_seeds, all_subseeds): pass @@ -497,7 +505,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sampler = None - def __init__(self, enable_hr=False, denoising_strength=0.75, firstphase_width=0, firstphase_height=0, **kwargs): + def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs): super().__init__(**kwargs) self.enable_hr = enable_hr self.denoising_strength = denoising_strength