add an option to choose what you want to see in live preview (Live preview subject) and moves live preview settings to its own tab

This commit is contained in:
AUTOMATIC 2023-01-14 16:29:23 +03:00
parent 08c6f009a5
commit f94a215abe
3 changed files with 20 additions and 10 deletions

View File

@ -138,7 +138,7 @@ def samples_to_image_grid(samples, approximation=None):
def store_latent(decoded): def store_latent(decoded):
state.current_latent = decoded state.current_latent = decoded
if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed: if not shared.parallel_processing_allowed:
shared.state.current_image = sample_to_image(decoded) shared.state.current_image = sample_to_image(decoded)
@ -243,7 +243,7 @@ class VanillaStableDiffusionSampler:
self.nmask = p.nmask if hasattr(p, 'nmask') else None self.nmask = p.nmask if hasattr(p, 'nmask') else None
def adjust_steps_if_invalid(self, p, num_steps): def adjust_steps_if_invalid(self, p, num_steps):
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'): if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
valid_step = 999 / (1000 // num_steps) valid_step = 999 / (1000 // num_steps)
if valid_step == floor(valid_step): if valid_step == floor(valid_step):
return int(valid_step) + 1 return int(valid_step) + 1
@ -266,8 +266,7 @@ class VanillaStableDiffusionSampler:
if image_conditioning is not None: if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]} conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples return samples
@ -352,6 +351,11 @@ class CFGDenoiser(torch.nn.Module):
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
if opts.live_preview_content == "Prompt":
store_latent(x_out[0:uncond.shape[0]])
elif opts.live_preview_content == "Negative prompt":
store_latent(x_out[-uncond.shape[0]:])
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None: if self.mask is not None:
@ -423,7 +427,8 @@ class KDiffusionSampler:
def callback_state(self, d): def callback_state(self, d):
step = d['i'] step = d['i']
latent = d["denoised"] latent = d["denoised"]
store_latent(latent) if opts.live_preview_content == "Combined":
store_latent(latent)
self.last_latent = latent self.last_latent = latent
if self.stop_at is not None and step > self.stop_at: if self.stop_at is not None and step > self.stop_at:

View File

@ -176,7 +176,7 @@ class State:
self.interrupted = True self.interrupted = True
def nextjob(self): def nextjob(self):
if opts.show_progress_every_n_steps == -1: if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
self.do_set_current_image() self.do_set_current_image()
self.job_no += 1 self.job_no += 1
@ -224,7 +224,7 @@ class State:
if not parallel_processing_allowed: if not parallel_processing_allowed:
return return
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.show_progress_every_n_steps > 0: if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable:
self.do_set_current_image() self.do_set_current_image()
def do_set_current_image(self): def do_set_current_image(self):
@ -423,8 +423,6 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
options_templates.update(options_section(('ui', "User interface"), { options_templates.update(options_section(('ui', "User interface"), {
"show_progressbar": OptionInfo(True, "Show progressbar"), "show_progressbar": OptionInfo(True, "Show progressbar"),
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set to 0 to disable. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
"show_progress_type": OptionInfo("Full", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"), "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"return_grid": OptionInfo(True, "Show grid in results for web"), "return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
@ -444,6 +442,13 @@ options_templates.update(options_section(('ui', "User interface"), {
'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)), 'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
})) }))
options_templates.update(options_section(('ui', "Live previews"), {
"live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
"show_progress_every_n_steps": OptionInfo(10, "Show new live preview image every N sampling steps. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
"show_progress_type": OptionInfo("Approx NN", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), { options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}), "hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),

View File

@ -52,7 +52,7 @@ def check_progress_call(id_part):
image = gr.update(visible=False) image = gr.update(visible=False)
preview_visibility = gr.update(visible=False) preview_visibility = gr.update(visible=False)
if opts.show_progress_every_n_steps != 0: if opts.live_previews_enable:
shared.state.set_current_image() shared.state.set_current_image()
image = shared.state.current_image image = shared.state.current_image