added preview option
This commit is contained in:
parent
db6db585eb
commit
fd66199769
@ -176,6 +176,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||||
|
|
||||||
samples_ddim = p.sample(x=x, conditioning=c, unconditional_conditioning=uc)
|
samples_ddim = p.sample(x=x, conditioning=c, unconditional_conditioning=uc)
|
||||||
|
if state.interrupted:
|
||||||
|
|
||||||
|
# if we are interruped, sample returns just noise
|
||||||
|
# use the image collected previously in sampler loop
|
||||||
|
samples_ddim = shared.state.current_latent
|
||||||
|
|
||||||
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
|
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
@ -42,6 +42,8 @@ def p_sample_ddim_hook(sampler_wrapper, x_dec, cond, ts, *args, **kwargs):
|
|||||||
img_orig = sampler_wrapper.sampler.model.q_sample(sampler_wrapper.init_latent, ts)
|
img_orig = sampler_wrapper.sampler.model.q_sample(sampler_wrapper.init_latent, ts)
|
||||||
x_dec = img_orig * sampler_wrapper.mask + sampler_wrapper.nmask * x_dec
|
x_dec = img_orig * sampler_wrapper.mask + sampler_wrapper.nmask * x_dec
|
||||||
|
|
||||||
|
state.current_latent = x_dec
|
||||||
|
|
||||||
return sampler_wrapper.orig_p_sample_ddim(x_dec, cond, ts, *args, **kwargs)
|
return sampler_wrapper.orig_p_sample_ddim(x_dec, cond, ts, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
@ -141,6 +143,9 @@ class KDiffusionSampler:
|
|||||||
self.func = getattr(k_diffusion.sampling, self.funcname)
|
self.func = getattr(k_diffusion.sampling, self.funcname)
|
||||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||||
|
|
||||||
|
def callback_state(self, d):
|
||||||
|
state.current_latent = d["denoised"]
|
||||||
|
|
||||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
||||||
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
||||||
sigmas = self.model_wrap.get_sigmas(p.steps)
|
sigmas = self.model_wrap.get_sigmas(p.steps)
|
||||||
@ -157,7 +162,7 @@ class KDiffusionSampler:
|
|||||||
if hasattr(k_diffusion.sampling, 'trange'):
|
if hasattr(k_diffusion.sampling, 'trange'):
|
||||||
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
|
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
|
||||||
|
|
||||||
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False)
|
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
|
||||||
|
|
||||||
def sample(self, p, x, conditioning, unconditional_conditioning):
|
def sample(self, p, x, conditioning, unconditional_conditioning):
|
||||||
sigmas = self.model_wrap.get_sigmas(p.steps)
|
sigmas = self.model_wrap.get_sigmas(p.steps)
|
||||||
@ -166,6 +171,6 @@ class KDiffusionSampler:
|
|||||||
if hasattr(k_diffusion.sampling, 'trange'):
|
if hasattr(k_diffusion.sampling, 'trange'):
|
||||||
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
|
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
|
||||||
|
|
||||||
samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False)
|
samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
|
||||||
return samples_ddim
|
return samples_ddim
|
||||||
|
|
||||||
|
@ -39,6 +39,7 @@ gpu = torch.device("cuda")
|
|||||||
device = gpu if torch.cuda.is_available() else cpu
|
device = gpu if torch.cuda.is_available() else cpu
|
||||||
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
|
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
|
||||||
|
|
||||||
|
|
||||||
class State:
|
class State:
|
||||||
interrupted = False
|
interrupted = False
|
||||||
job = ""
|
job = ""
|
||||||
@ -46,6 +47,8 @@ class State:
|
|||||||
job_count = 0
|
job_count = 0
|
||||||
sampling_step = 0
|
sampling_step = 0
|
||||||
sampling_steps = 0
|
sampling_steps = 0
|
||||||
|
current_latent = None
|
||||||
|
current_image = None
|
||||||
|
|
||||||
def interrupt(self):
|
def interrupt(self):
|
||||||
self.interrupted = True
|
self.interrupted = True
|
||||||
@ -99,6 +102,7 @@ class Options:
|
|||||||
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
||||||
"upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}),
|
"upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}),
|
||||||
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
||||||
|
"show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
||||||
}
|
}
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
@ -9,6 +9,8 @@ import sys
|
|||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
@ -119,6 +121,9 @@ def wrap_gradio_call(func):
|
|||||||
print("Arguments:", args, kwargs, file=sys.stderr)
|
print("Arguments:", args, kwargs, file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
shared.state.job = ""
|
||||||
|
shared.state.job_count = 0
|
||||||
|
|
||||||
res = [None, '', f"<div class='error'>{plaintext_to_html(type(e).__name__+': '+str(e))}</div>"]
|
res = [None, '', f"<div class='error'>{plaintext_to_html(type(e).__name__+': '+str(e))}</div>"]
|
||||||
|
|
||||||
elapsed = time.perf_counter() - t
|
elapsed = time.perf_counter() - t
|
||||||
@ -134,11 +139,9 @@ def wrap_gradio_call(func):
|
|||||||
|
|
||||||
|
|
||||||
def check_progress_call():
|
def check_progress_call():
|
||||||
if not opts.show_progressbar:
|
|
||||||
return ""
|
|
||||||
|
|
||||||
if shared.state.job_count == 0:
|
if shared.state.job_count == 0:
|
||||||
return ""
|
return "", gr_show(False), gr_show(False)
|
||||||
|
|
||||||
progress = 0
|
progress = 0
|
||||||
|
|
||||||
@ -149,9 +152,29 @@ def check_progress_call():
|
|||||||
|
|
||||||
progress = min(progress, 1)
|
progress = min(progress, 1)
|
||||||
|
|
||||||
progressbar = f"""<div class='progressDiv'><div class='progress' style="width:{progress * 100}%">{str(int(progress*100))+"%" if progress > 0.01 else ""}</div></div>"""
|
progressbar = ""
|
||||||
|
if opts.show_progressbar:
|
||||||
|
progressbar = f"""<div class='progressDiv'><div class='progress' style="width:{progress * 100}%">{str(int(progress*100))+"%" if progress > 0.01 else ""}</div></div>"""
|
||||||
|
|
||||||
return f"<span style='display: none'>{time.time()}</span><p>{progressbar}</p>"
|
image = gr_show(False)
|
||||||
|
preview_visibility = gr_show(False)
|
||||||
|
|
||||||
|
if opts.show_progress_every_n_steps > 0:
|
||||||
|
if (shared.state.sampling_step-1) % opts.show_progress_every_n_steps == 0 and shared.state.current_latent is not None:
|
||||||
|
x_sample = shared.sd_model.decode_first_stage(shared.state.current_latent[0:1].type(shared.sd_model.dtype))[0]
|
||||||
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||||
|
x_sample = x_sample.astype(np.uint8)
|
||||||
|
shared.state.current_image = Image.fromarray(x_sample)
|
||||||
|
|
||||||
|
image = shared.state.current_image
|
||||||
|
|
||||||
|
if image is None or progress >= 1:
|
||||||
|
image = gr.update(value=None)
|
||||||
|
else:
|
||||||
|
preview_visibility = gr_show(True)
|
||||||
|
|
||||||
|
return f"<span style='display: none'>{time.time()}</span><p>{progressbar}</p>", preview_visibility, image
|
||||||
|
|
||||||
|
|
||||||
def roll_artist(prompt):
|
def roll_artist(prompt):
|
||||||
@ -204,6 +227,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
|||||||
|
|
||||||
with gr.Column(variant='panel'):
|
with gr.Column(variant='panel'):
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
|
txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False)
|
||||||
txt2img_gallery = gr.Gallery(label='Output', elem_id='txt2img_gallery')
|
txt2img_gallery = gr.Gallery(label='Output', elem_id='txt2img_gallery')
|
||||||
|
|
||||||
|
|
||||||
@ -251,8 +275,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
|||||||
|
|
||||||
check_progress.click(
|
check_progress.click(
|
||||||
fn=check_progress_call,
|
fn=check_progress_call,
|
||||||
|
show_progress=False,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
outputs=[progressbar],
|
outputs=[progressbar, txt2img_preview, txt2img_preview],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -337,13 +362,16 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
|||||||
|
|
||||||
with gr.Column(variant='panel'):
|
with gr.Column(variant='panel'):
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
|
img2img_preview = gr.Image(elem_id='img2img_preview', visible=False)
|
||||||
img2img_gallery = gr.Gallery(label='Output', elem_id='img2img_gallery')
|
img2img_gallery = gr.Gallery(label='Output', elem_id='img2img_gallery')
|
||||||
|
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
interrupt = gr.Button('Interrupt')
|
|
||||||
save = gr.Button('Save')
|
save = gr.Button('Save')
|
||||||
|
img2img_send_to_img2img = gr.Button('Send to img2img')
|
||||||
|
img2img_send_to_inpaint = gr.Button('Send to inpaint')
|
||||||
img2img_send_to_extras = gr.Button('Send to extras')
|
img2img_send_to_extras = gr.Button('Send to extras')
|
||||||
|
interrupt = gr.Button('Interrupt')
|
||||||
|
|
||||||
progressbar = gr.HTML(elem_id="progressbar")
|
progressbar = gr.HTML(elem_id="progressbar")
|
||||||
|
|
||||||
@ -426,8 +454,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
|||||||
|
|
||||||
check_progress.click(
|
check_progress.click(
|
||||||
fn=check_progress_call,
|
fn=check_progress_call,
|
||||||
|
show_progress=False,
|
||||||
inputs=[],
|
inputs=[],
|
||||||
outputs=[progressbar],
|
outputs=[progressbar, img2img_preview, img2img_preview],
|
||||||
)
|
)
|
||||||
|
|
||||||
interrupt.click(
|
interrupt.click(
|
||||||
@ -463,6 +492,20 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
|||||||
outputs=[init_img_with_mask],
|
outputs=[init_img_with_mask],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
img2img_send_to_img2img.click(
|
||||||
|
fn=lambda x: image_from_url_text(x),
|
||||||
|
_js="extract_image_from_gallery",
|
||||||
|
inputs=[img2img_gallery],
|
||||||
|
outputs=[init_img],
|
||||||
|
)
|
||||||
|
|
||||||
|
img2img_send_to_inpaint.click(
|
||||||
|
fn=lambda x: image_from_url_text(x),
|
||||||
|
_js="extract_image_from_gallery",
|
||||||
|
inputs=[img2img_gallery],
|
||||||
|
outputs=[init_img_with_mask],
|
||||||
|
)
|
||||||
|
|
||||||
with gr.Blocks(analytics_enabled=False) as extras_interface:
|
with gr.Blocks(analytics_enabled=False) as extras_interface:
|
||||||
with gr.Row().style(equal_height=False):
|
with gr.Row().style(equal_height=False):
|
||||||
with gr.Column(variant='panel'):
|
with gr.Column(variant='panel'):
|
||||||
|
17
script.js
17
script.js
@ -79,6 +79,23 @@ function addTitles(root){
|
|||||||
global_progressbar = progressbar
|
global_progressbar = progressbar
|
||||||
|
|
||||||
var mutationObserver = new MutationObserver(function(m){
|
var mutationObserver = new MutationObserver(function(m){
|
||||||
|
txt2img_preview = gradioApp().getElementById('txt2img_preview')
|
||||||
|
txt2img_gallery = gradioApp().getElementById('txt2img_gallery')
|
||||||
|
|
||||||
|
img2img_preview = gradioApp().getElementById('img2img_preview')
|
||||||
|
img2img_gallery = gradioApp().getElementById('img2img_gallery')
|
||||||
|
|
||||||
|
if(txt2img_preview != null && txt2img_gallery != null){
|
||||||
|
txt2img_preview.style.width = txt2img_gallery.clientWidth + "px"
|
||||||
|
txt2img_preview.style.height = txt2img_gallery.clientHeight + "px"
|
||||||
|
}
|
||||||
|
|
||||||
|
if(img2img_preview != null && img2img_gallery != null){
|
||||||
|
img2img_preview.style.width = img2img_gallery.clientWidth + "px"
|
||||||
|
img2img_preview.style.height = img2img_gallery.clientHeight + "px"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
window.setTimeout(requestProgress, 500)
|
window.setTimeout(requestProgress, 500)
|
||||||
});
|
});
|
||||||
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
||||||
|
15
style.css
15
style.css
@ -31,6 +31,20 @@ button{
|
|||||||
max-width: 10em;
|
max-width: 10em;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#txt2img_preview, #img2img_preview{
|
||||||
|
position: absolute;
|
||||||
|
width: 320px;
|
||||||
|
left: 0;
|
||||||
|
right: 0;
|
||||||
|
margin-left: auto;
|
||||||
|
margin-right: auto;
|
||||||
|
z-index: 100;
|
||||||
|
}
|
||||||
|
|
||||||
|
#txt2img_preview div.left-0.top-0, #img2img_preview div.left-0.top-0{
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block span{
|
fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block span{
|
||||||
position: absolute;
|
position: absolute;
|
||||||
top: -0.6em;
|
top: -0.6em;
|
||||||
@ -96,3 +110,4 @@ input[type="range"]{
|
|||||||
text-align: right;
|
text-align: right;
|
||||||
border-radius: 8px;
|
border-radius: 8px;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
5
webui.py
5
webui.py
@ -125,7 +125,8 @@ def wrap_gradio_gpu_call(func):
|
|||||||
shared.state.sampling_step = 0
|
shared.state.sampling_step = 0
|
||||||
shared.state.job_count = -1
|
shared.state.job_count = -1
|
||||||
shared.state.job_no = 0
|
shared.state.job_no = 0
|
||||||
|
shared.state.current_latent = None
|
||||||
|
shared.state.current_image = None
|
||||||
|
|
||||||
with queue_lock:
|
with queue_lock:
|
||||||
res = func(*args, **kwargs)
|
res = func(*args, **kwargs)
|
||||||
@ -163,7 +164,7 @@ modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# make the program just exit at ctrl+c without waiting for anything
|
# make the program just exit at ctrl+c without waiting for anything
|
||||||
def sigint_handler(sig, frame):
|
def sigint_handler(sig, frame):
|
||||||
print(f'Interrupted with singal {sig} in {frame}')
|
print(f'Interrupted with signal {sig} in {frame}')
|
||||||
os._exit(0)
|
os._exit(0)
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user