Compare commits

..

No commits in common. "22bcc7be428c94e9408f589966c2040187245d81" and "48a15821de768fea76e66f26df83df3fddf18f4b" have entirely different histories.

105 changed files with 2322 additions and 7459 deletions

View File

@ -37,20 +37,20 @@ body:
id: what-should id: what-should
attributes: attributes:
label: What should have happened? label: What should have happened?
description: Tell what you think the normal behavior should be description: tell what you think the normal behavior should be
validations: validations:
required: true required: true
- type: input - type: input
id: commit id: commit
attributes: attributes:
label: Commit where the problem happens label: Commit where the problem happens
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.) description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
validations: validations:
required: true required: true
- type: dropdown - type: dropdown
id: platforms id: platforms
attributes: attributes:
label: What platforms do you use to access the UI ? label: What platforms do you use to access UI ?
multiple: true multiple: true
options: options:
- Windows - Windows
@ -74,27 +74,10 @@ body:
id: cmdargs id: cmdargs
attributes: attributes:
label: Command Line Arguments label: Command Line Arguments
description: Are you using any launching parameters/command line arguments (modified webui-user .bat/.sh) ? If yes, please write them below. Write "No" otherwise. description: Are you using any launching parameters/command line arguments (modified webui-user.py) ? If yes, please write them below
render: Shell render: Shell
validations:
required: true
- type: textarea
id: extensions
attributes:
label: List of extensions
description: Are you using any extensions other than built-ins? If yes, provide a list, you can copy it at "Extensions" tab. Write "No" otherwise.
validations:
required: true
- type: textarea
id: logs
attributes:
label: Console logs
description: Please provide **full** cmd/terminal logs from the moment you started UI to the end of it, after your bug happened. If it's very long, provide a link to pastebin or similar service.
render: Shell
validations:
required: true
- type: textarea - type: textarea
id: misc id: misc
attributes: attributes:
label: Additional information label: Additional information, context and logs
description: Please provide us with any relevant additional info or context. description: Please provide us with any relevant additional info, context or log output.

View File

@ -18,7 +18,7 @@ jobs:
cache-dependency-path: | cache-dependency-path: |
**/requirements*txt **/requirements*txt
- name: Run tests - name: Run tests
run: python launch.py --tests test --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test run: python launch.py --tests --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
- name: Upload main app stdout-stderr - name: Upload main app stdout-stderr
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
if: always() if: always()

View File

@ -13,11 +13,11 @@ A browser interface based on Gradio library for Stable Diffusion.
- Prompt Matrix - Prompt Matrix
- Stable Diffusion Upscale - Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to - Attention, specify parts of text that the model should pay more attention to
- a man in a `((tuxedo))` - will pay more attention to tuxedo - a man in a ((tuxedo)) - will pay more attention to tuxedo
- a man in a `(tuxedo:1.21)` - alternative syntax - a man in a (tuxedo:1.21) - alternative syntax
- select text and press `Ctrl+Up` or `Ctrl+Down` to automatically adjust attention to selected text (code contributed by anonymous user) - select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times - Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters - X/Y plot, a way to draw a 2 dimensional plot of images with different parameters
- Textual Inversion - Textual Inversion
- have as many embeddings as you want and use any names you like for them - have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token - use multiple embeddings with different numbers of vectors per token
@ -46,7 +46,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- drag and drop an image/text-parameters to promptbox - drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI - Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page - Settings page
- Running arbitrary python code from UI (must run with `--allow-code` to enable) - Running arbitrary python code from UI (must run with --allow-code to enable)
- Mouseover hints for most UI elements - Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config - Possible to change defaults/mix/max/step values for UI elements via text config
- Tiling support, a checkbox to create images that can be tiled like textures - Tiling support, a checkbox to create images that can be tiled like textures
@ -69,7 +69,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts - DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args) - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI - via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option - Generate forever option
- Training tab - Training tab
@ -78,11 +78,11 @@ A browser interface based on Gradio library for Stable Diffusion.
- Clip skip - Clip skip
- Hypernetworks - Hypernetworks
- Loras (same as Hypernetworks but more pretty) - Loras (same as Hypernetworks but more pretty)
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt - A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt.
- Can select to load a different VAE from settings screen - Can select to load a different VAE from settings screen
- Estimated completion time in progress bar - Estimated completion time in progress bar
- API - API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions - [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions - [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
@ -91,6 +91,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64 - Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
- Now with a license! - Now with a license!
- Reorder elements in the UI from settings screen - Reorder elements in the UI from settings screen
-
## Installation and Running ## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
@ -100,10 +101,11 @@ Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services) - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows ### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH". 1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
2. Install [git](https://git-scm.com/download/win). 2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`. 3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. 4. Place stable diffusion checkpoint (`model.ckpt`) in the `models/Stable-diffusion` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
5. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Automatic Installation on Linux ### Automatic Installation on Linux
1. Install the dependencies: 1. Install the dependencies:
@ -119,7 +121,7 @@ sudo pacman -S wget git python3
```bash ```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh) bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
``` ```
3. Run `webui.sh`.
### Installation on Apple Silicon ### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon). Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
@ -153,9 +155,6 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch - Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers - xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK - Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You) - (You)

View File

@ -1,98 +0,0 @@
# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
# See more details in LICENSE.
model:
base_learning_rate: 1.0e-04
target: modules.models.diffusion.ddpm_edit.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: edited
cond_stage_key: edit
# image_size: 64
# image_size: 32
image_size: 16
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: false
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 0 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
params:
batch_size: 128
num_workers: 1
wrap: false
validation:
target: edit_dataset.EditDataset
params:
path: data/clip-filtered-dataset
cache_dir: data/
cache_name: data_10k
split: val
min_text_sim: 0.2
min_image_sim: 0.75
min_direction_sim: 0.2
max_samples_per_prompt: 1
min_resize_res: 512
max_resize_res: 512
crop_res: 512
output_as_edit: False
real_input: True

View File

@ -1,4 +1,4 @@
from modules import extra_networks, shared from modules import extra_networks
import lora import lora
class ExtraNetworkLora(extra_networks.ExtraNetwork): class ExtraNetworkLora(extra_networks.ExtraNetwork):
@ -6,12 +6,6 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
super().__init__('lora') super().__init__('lora')
def activate(self, p, params_list): def activate(self, p, params_list):
additional = shared.opts.sd_lora
if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = [] names = []
multipliers = [] multipliers = []
for params in params_list: for params in params_list:

View File

@ -2,34 +2,18 @@ import glob
import os import os
import re import re
import torch import torch
from typing import Union
from modules import shared, devices, sd_models, errors from modules import shared, devices, sd_models
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
re_digits = re.compile(r"\d+") re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$") re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_compiled = {} re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
suffix_conversion = { re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
def convert_diffusers_name_to_compvis(key, is_sd2): def convert_diffusers_name_to_compvis(key):
def match(match_list, regex_text): def match(match_list, regex):
regex = re_compiled.get(regex_text)
if regex is None:
regex = re.compile(regex_text)
re_compiled[regex_text] = regex
r = re.match(regex, key) r = re.match(regex, key)
if not r: if not r:
return False return False
@ -40,33 +24,16 @@ def convert_diffusers_name_to_compvis(key, is_sd2):
m = [] m = []
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): if match(m, re_unet_down_blocks):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"): if match(m, re_unet_mid_blocks):
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2]) return f"diffusion_model_middle_block_1_{m[1]}"
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): if match(m, re_unet_up_blocks):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
if match(m, re_text_block):
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key return key
@ -76,23 +43,6 @@ class LoraOnDisk:
def __init__(self, name, filename): def __init__(self, name, filename):
self.name = name self.name = name
self.filename = filename self.filename = filename
self.metadata = {}
_, ext = os.path.splitext(filename)
if ext.lower() == ".safetensors":
try:
self.metadata = sd_models.read_metadata_from_safetensors(filename)
except Exception as e:
errors.display(e, f"reading lora {filename}")
if self.metadata:
m = {}
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
m[k] = v
self.metadata = m
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
class LoraModule: class LoraModule:
@ -132,22 +82,15 @@ def load_lora(name, filename):
sd = sd_models.read_state_dict(filename) sd = sd_models.read_state_dict(filename)
keys_failed_to_match = {} keys_failed_to_match = []
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
for key_diffusers, weight in sd.items(): for key_diffusers, weight in sd.items():
key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1) fullkey = convert_diffusers_name_to_compvis(key_diffusers)
key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2) key, lora_key = fullkey.split(".", 1)
sd_module = shared.sd_model.lora_layer_mapping.get(key, None) sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
if sd_module is None: if sd_module is None:
m = re_x_proj.match(key) keys_failed_to_match.append(key_diffusers)
if m:
sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None)
if sd_module is None:
keys_failed_to_match[key_diffusers] = key
continue continue
lora_module = lora.modules.get(key, None) lora_module = lora.modules.get(key, None)
@ -161,21 +104,15 @@ def load_lora(name, filename):
if type(sd_module) == torch.nn.Linear: if type(sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.MultiheadAttention:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d: elif type(sd_module) == torch.nn.Conv2d:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else: else:
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
continue
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
with torch.no_grad(): with torch.no_grad():
module.weight.copy_(weight) module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype) module.to(device=devices.device, dtype=devices.dtype)
if lora_key == "lora_up.weight": if lora_key == "lora_up.weight":
lora_module.up = module lora_module.up = module
@ -221,120 +158,25 @@ def load_loras(names, multipliers=None):
loaded_loras.append(lora) loaded_loras.append(lora)
def lora_calc_updown(lora, module, target): def lora_forward(module, input, res):
with torch.no_grad(): if len(loaded_loras) == 0:
up = module.up.weight.to(target.device, dtype=target.dtype) return res
down = module.down.weight.to(target.device, dtype=target.dtype)
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
else:
updown = up @ down
updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
return updown
def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of Loras to the weights of torch layer self.
If weights already have this particular set of loras applied, does nothing.
If not, restores orginal weights from backup and alters weights according to loras.
"""
lora_layer_name = getattr(self, 'lora_layer_name', None)
if lora_layer_name is None:
return
current_names = getattr(self, "lora_current_names", ())
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None:
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.lora_weights_backup = weights_backup
if current_names != wanted_names:
if weights_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
lora_layer_name = getattr(module, 'lora_layer_name', None)
for lora in loaded_loras: for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None) module = lora.modules.get(lora_layer_name, None)
if module is not None and hasattr(self, 'weight'): if module is not None:
self.weight += lora_calc_updown(lora, module, self.weight) res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
continue
module_q = lora.modules.get(lora_layer_name + "_q_proj", None) return res
module_k = lora.modules.get(lora_layer_name + "_k_proj", None)
module_v = lora.modules.get(lora_layer_name + "_v_proj", None)
module_out = lora.modules.get(lora_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight)
updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight)
updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
self.in_proj_weight += updown_qkv
self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight)
continue
if module is None:
continue
print(f'failed to calculate lora weights for layer {lora_layer_name}')
setattr(self, "lora_current_names", wanted_names)
def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
setattr(self, "lora_current_names", ())
setattr(self, "lora_weights_backup", None)
def lora_Linear_forward(self, input): def lora_Linear_forward(self, input):
lora_apply_weights(self) return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
return torch.nn.Linear_forward_before_lora(self, input)
def lora_Linear_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
def lora_Conv2d_forward(self, input): def lora_Conv2d_forward(self, input):
lora_apply_weights(self) return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
return torch.nn.Conv2d_forward_before_lora(self, input)
def lora_Conv2d_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
def lora_MultiheadAttention_forward(self, *args, **kwargs):
lora_apply_weights(self)
return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs)
def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs)
def list_available_loras(): def list_available_loras():
@ -347,7 +189,7 @@ def list_available_loras():
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \ glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True) glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True)
for filename in sorted(candidates, key=str.lower): for filename in sorted(candidates):
if os.path.isdir(filename): if os.path.isdir(filename):
continue continue

View File

@ -1,19 +1,14 @@
import torch import torch
import gradio as gr
import lora import lora
import extra_networks_lora import extra_networks_lora
import ui_extra_networks_lora import ui_extra_networks_lora
from modules import script_callbacks, ui_extra_networks, extra_networks, shared from modules import script_callbacks, ui_extra_networks, extra_networks
def unload(): def unload():
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
def before_ui(): def before_ui():
@ -24,33 +19,12 @@ def before_ui():
if not hasattr(torch.nn, 'Linear_forward_before_lora'): if not hasattr(torch.nn, 'Linear_forward_before_lora'):
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'): if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
torch.nn.Linear.forward = lora.lora_Linear_forward torch.nn.Linear.forward = lora.lora_Linear_forward
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules) script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload) script_callbacks.on_script_unloaded(unload)
script_callbacks.on_before_ui(before_ui) script_callbacks.on_before_ui(before_ui)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
}))

View File

@ -15,15 +15,20 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
def list_items(self): def list_items(self):
for name, lora_on_disk in lora.available_loras.items(): for name, lora_on_disk in lora.available_loras.items():
path, ext = os.path.splitext(lora_on_disk.filename) path, ext = os.path.splitext(lora_on_disk.filename)
previews = [path + ".png", path + ".preview.png"]
preview = None
for file in previews:
if os.path.isfile(file):
preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file))
break
yield { yield {
"name": name, "name": name,
"filename": path, "filename": path,
"preview": self.find_preview(path), "preview": preview,
"description": self.find_description(path),
"search_term": self.search_terms_from_path(lora_on_disk.filename),
"prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"), "prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.{shared.opts.samples_format}", "local_preview": path + ".png",
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
} }
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):

View File

@ -89,15 +89,22 @@ function checkBrackets(evt, textArea, counterElt) {
function setupBracketChecking(id_prompt, id_counter){ function setupBracketChecking(id_prompt, id_counter){
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea"); var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
var counter = gradioApp().getElementById(id_counter) var counter = gradioApp().getElementById(id_counter)
textarea.addEventListener("input", function(evt){ textarea.addEventListener("input", function(evt){
checkBrackets(evt, textarea, counter) checkBrackets(evt, textarea, counter)
}); });
} }
onUiLoaded(function(){ var shadowRootLoaded = setInterval(function() {
var shadowRoot = document.querySelector('gradio-app').shadowRoot;
if(! shadowRoot) return false;
var shadowTextArea = shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
if(shadowTextArea.length < 1) return false;
clearInterval(shadowRootLoaded);
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter') setupBracketChecking('txt2img_prompt', 'txt2img_token_counter')
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter') setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter')
setupBracketChecking('img2img_prompt', 'img2img_token_counter') setupBracketChecking('img2img_prompt', 'imgimg_token_counter')
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter') setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter')
}) }, 1000);

View File

@ -1,15 +1,11 @@
<div class='card' style={style} onclick={card_clicked}> <div class='card' {preview_html} onclick={card_clicked}>
{metadata_button}
<div class='actions'> <div class='actions'>
<div class='additional'> <div class='additional'>
<ul> <ul>
<a href="#" title="replace preview image with currently selected in gallery" onclick={save_card_preview}>replace preview</a> <a href="#" title="replace preview image with currently selected in gallery" onclick={save_card_preview}>replace preview</a>
</ul> </ul>
<span style="display:none" class='search_term'>{search_term}</span>
</div> </div>
<span class='name'>{name}</span> <span class='name'>{name}</span>
<span class='description'>{description}</span>
</div> </div>
</div> </div>

View File

@ -417,248 +417,3 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. SOFTWARE.
</pre> </pre>
<h2><a href="https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/LICENSE">Scaled Dot Product Attention</a></h2>
<small>Some small amounts of code borrowed and reworked.</small>
<pre>
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</pre>
<h2><a href="https://github.com/explosion/curated-transformers/blob/main/LICENSE">Curated transformers</a></h2>
<small>The MPS workaround for nn.Linear on macOS 13.2.X is based on the MPS workaround for nn.Linear created by danieldk for Curated transformers</small>
<pre>
The MIT License (MIT)
Copyright (C) 2021 ExplosionAI GmbH
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
</pre>

View File

@ -12,7 +12,7 @@ function dimensionChange(e, is_width, is_height){
currentHeight = e.target.value*1.0 currentHeight = e.target.value*1.0
} }
var inImg2img = gradioApp().querySelector("#tab_img2img").style.display == "block"; var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
if(!inImg2img){ if(!inImg2img){
return; return;
@ -22,7 +22,7 @@ function dimensionChange(e, is_width, is_height){
var tabIndex = get_tab_index('mode_img2img') var tabIndex = get_tab_index('mode_img2img')
if(tabIndex == 0){ // img2img if(tabIndex == 0){ // img2img
targetElement = gradioApp().querySelector('#img2img_image div[data-testid=image] img'); targetElement = gradioApp().querySelector('div[data-testid=image] img');
} else if(tabIndex == 1){ //Sketch } else if(tabIndex == 1){ //Sketch
targetElement = gradioApp().querySelector('#img2img_sketch div[data-testid=image] img'); targetElement = gradioApp().querySelector('#img2img_sketch div[data-testid=image] img');
} else if(tabIndex == 2){ // Inpaint } else if(tabIndex == 2){ // Inpaint
@ -38,7 +38,7 @@ function dimensionChange(e, is_width, is_height){
if(!arPreviewRect){ if(!arPreviewRect){
arPreviewRect = document.createElement('div') arPreviewRect = document.createElement('div')
arPreviewRect.id = "imageARPreview"; arPreviewRect.id = "imageARPreview";
gradioApp().appendChild(arPreviewRect) gradioApp().getRootNode().appendChild(arPreviewRect)
} }
@ -91,9 +91,7 @@ onUiUpdate(function(){
if(arPreviewRect){ if(arPreviewRect){
arPreviewRect.style.display = 'none'; arPreviewRect.style.display = 'none';
} }
var tabImg2img = gradioApp().querySelector("#tab_img2img"); var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
if (tabImg2img) {
var inImg2img = tabImg2img.style.display == "block";
if(inImg2img){ if(inImg2img){
let inputs = gradioApp().querySelectorAll('input'); let inputs = gradioApp().querySelectorAll('input');
inputs.forEach(function(e){ inputs.forEach(function(e){
@ -112,5 +110,4 @@ onUiUpdate(function(){
} }
}) })
} }
}
}); });

View File

@ -43,7 +43,7 @@ contextMenuInit = function(){
}) })
gradioApp().appendChild(contextMenu) gradioApp().getRootNode().appendChild(contextMenu)
let menuWidth = contextMenu.offsetWidth + 4; let menuWidth = contextMenu.offsetWidth + 4;
let menuHeight = contextMenu.offsetHeight + 4; let menuHeight = contextMenu.offsetHeight + 4;

View File

@ -1,6 +1,6 @@
function keyupEditAttention(event){ function keyupEditAttention(event){
let target = event.originalTarget || event.composedPath()[0]; let target = event.originalTarget || event.composedPath()[0];
if (! target.matches("[id*='_toprow'] [id*='_prompt'] textarea")) return; if (!target.matches("[id*='_toprow'] textarea.gr-text-input[placeholder]")) return;
if (! (event.metaKey || event.ctrlKey)) return; if (! (event.metaKey || event.ctrlKey)) return;
let isPlus = event.key == "ArrowUp" let isPlus = event.key == "ArrowUp"

View File

@ -1,8 +1,7 @@
function extensions_apply(_, _, disable_all){ function extensions_apply(_, _){
var disable = [] disable = []
var update = [] update = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){ gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked) if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7)) disable.push(x.name.substr(7))
@ -13,28 +12,15 @@ function extensions_apply(_, _, disable_all){
restart_reload() restart_reload()
return [JSON.stringify(disable), JSON.stringify(update), disable_all] return [JSON.stringify(disable), JSON.stringify(update)]
} }
function extensions_check(_, _){ function extensions_check(){
var disable = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7))
})
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){ gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
x.innerHTML = "Loading..." x.innerHTML = "Loading..."
}) })
return []
var id = randomId()
requestProgress(id, gradioApp().getElementById('extensions_installed_top'), null, function(){
})
return [id, JSON.stringify(disable)]
} }
function install_extension_from_index(button, url){ function install_extension_from_index(button, url){

View File

@ -5,16 +5,18 @@ function setupExtraNetworksForTab(tabname){
var tabs = gradioApp().querySelector('#'+tabname+'_extra_tabs > div') var tabs = gradioApp().querySelector('#'+tabname+'_extra_tabs > div')
var search = gradioApp().querySelector('#'+tabname+'_extra_search textarea') var search = gradioApp().querySelector('#'+tabname+'_extra_search textarea')
var refresh = gradioApp().getElementById(tabname+'_extra_refresh') var refresh = gradioApp().getElementById(tabname+'_extra_refresh')
var close = gradioApp().getElementById(tabname+'_extra_close')
search.classList.add('search') search.classList.add('search')
tabs.appendChild(search) tabs.appendChild(search)
tabs.appendChild(refresh) tabs.appendChild(refresh)
tabs.appendChild(close)
search.addEventListener("input", function(evt){ search.addEventListener("input", function(evt){
searchTerm = search.value.toLowerCase() searchTerm = search.value.toLowerCase()
gradioApp().querySelectorAll('#'+tabname+'_extra_tabs div.card').forEach(function(elem){ gradioApp().querySelectorAll('#'+tabname+'_extra_tabs div.card').forEach(function(elem){
text = elem.querySelector('.name').textContent.toLowerCase() + " " + elem.querySelector('.search_term').textContent.toLowerCase() text = elem.querySelector('.name').textContent.toLowerCase()
elem.style.display = text.indexOf(searchTerm) == -1 ? "none" : "" elem.style.display = text.indexOf(searchTerm) == -1 ? "none" : ""
}) })
}); });
@ -46,39 +48,10 @@ function setupExtraNetworks(){
onUiLoaded(setupExtraNetworks) onUiLoaded(setupExtraNetworks)
var re_extranet = /<([^:]+:[^:]+):[\d\.]+>/;
var re_extranet_g = /\s+<([^:]+:[^:]+):[\d\.]+>/g;
function tryToRemoveExtraNetworkFromPrompt(textarea, text){
var m = text.match(re_extranet)
if(! m) return false
var partToSearch = m[1]
var replaced = false
var newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found, index){
m = found.match(re_extranet);
if(m[1] == partToSearch){
replaced = true;
return ""
}
return found;
})
if(replaced){
textarea.value = newTextareaText
return true;
}
return false
}
function cardClicked(tabname, textToAdd, allowNegativePrompt){ function cardClicked(tabname, textToAdd, allowNegativePrompt){
var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea") var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea")
if(! tryToRemoveExtraNetworkFromPrompt(textarea, textToAdd)){ textarea.value = textarea.value + " " + textToAdd
textarea.value = textarea.value + opts.extra_networks_add_text_separator + textToAdd
}
updateInput(textarea) updateInput(textarea)
} }
@ -94,86 +67,3 @@ function saveCardPreview(event, tabname, filename){
event.stopPropagation() event.stopPropagation()
event.preventDefault() event.preventDefault()
} }
function extraNetworksSearchButton(tabs_id, event){
searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > div > textarea')
button = event.target
text = button.classList.contains("search-all") ? "" : button.textContent.trim()
searchTextarea.value = text
updateInput(searchTextarea)
}
var globalPopup = null;
var globalPopupInner = null;
function popup(contents){
if(! globalPopup){
globalPopup = document.createElement('div')
globalPopup.onclick = function(){ globalPopup.style.display = "none"; };
globalPopup.classList.add('global-popup');
var close = document.createElement('div')
close.classList.add('global-popup-close');
close.onclick = function(){ globalPopup.style.display = "none"; };
close.title = "Close";
globalPopup.appendChild(close)
globalPopupInner = document.createElement('div')
globalPopupInner.onclick = function(event){ event.stopPropagation(); return false; };
globalPopupInner.classList.add('global-popup-inner');
globalPopup.appendChild(globalPopupInner)
gradioApp().appendChild(globalPopup);
}
globalPopupInner.innerHTML = '';
globalPopupInner.appendChild(contents);
globalPopup.style.display = "flex";
}
function extraNetworksShowMetadata(text){
elem = document.createElement('pre')
elem.classList.add('popup-metadata');
elem.textContent = text;
popup(elem);
}
function requestGet(url, data, handler, errorHandler){
var xhr = new XMLHttpRequest();
var args = Object.keys(data).map(function(k){ return encodeURIComponent(k) + '=' + encodeURIComponent(data[k]) }).join('&')
xhr.open("GET", url + "?" + args, true);
xhr.onreadystatechange = function () {
if (xhr.readyState === 4) {
if (xhr.status === 200) {
try {
var js = JSON.parse(xhr.responseText);
handler(js)
} catch (error) {
console.error(error);
errorHandler()
}
} else{
errorHandler()
}
}
};
var js = JSON.stringify(data);
xhr.send(js);
}
function extraNetworksRequestMetadata(event, extraPage, cardName){
showError = function(){ extraNetworksShowMetadata("there was an error getting metadata"); }
requestGet("./sd_extra_networks/metadata", {"page": extraPage, "item": cardName}, function(data){
if(data && data.metadata){
extraNetworksShowMetadata(data.metadata)
} else{
showError()
}
}, showError)
event.stopPropagation()
}

View File

@ -6,11 +6,10 @@ titles = {
"GFPGAN": "Restore low quality faces using GFPGAN neural network", "GFPGAN": "Restore low quality faces using GFPGAN neural network",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help", "Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting", "DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
"UniPC": "Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models",
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution", "DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
"Batch count": "How many batches of images to create (has no impact on generation performance or VRAM usage)", "Batch count": "How many batches of images to create",
"Batch size": "How many image to create in a single batch (increases generation performance at cost of higher VRAM usage)", "Batch size": "How many image to create in a single batch",
"CFG Scale": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results", "CFG Scale": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results",
"Seed": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result", "Seed": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result",
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time", "\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
@ -18,10 +17,11 @@ titles = {
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.", "\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
"\u{1f4c2}": "Open images output directory", "\u{1f4c2}": "Open images output directory",
"\u{1f4be}": "Save style", "\u{1f4be}": "Save style",
"\u{1f5d1}\ufe0f": "Clear prompt", "\U0001F5D1": "Clear prompt",
"\u{1f4cb}": "Apply selected styles to current prompt", "\u{1f4cb}": "Apply selected styles to current prompt",
"\u{1f4d2}": "Paste available values into the field", "\u{1f4d2}": "Paste available values into the field",
"\u{1f3b4}": "Show/hide extra networks", "\u{1f3b4}": "Show extra networks",
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt", "Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back", "SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",
@ -39,6 +39,7 @@ titles = {
"Inpaint at full resolution": "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image", "Inpaint at full resolution": "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image",
"Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.", "Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.",
"Denoising strength change factor": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.",
"Skip": "Stop processing current image and continue processing.", "Skip": "Stop processing current image and continue processing.",
"Interrupt": "Stop processing images and return any results accumulated so far.", "Interrupt": "Stop processing images and return any results accumulated so far.",
@ -49,7 +50,7 @@ titles = {
"None": "Do not do anything special", "None": "Do not do anything special",
"Prompt matrix": "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)", "Prompt matrix": "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)",
"X/Y/Z plot": "Create grid(s) where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows", "X/Y plot": "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows",
"Custom code": "Run Python code. Advanced user only. Must run program with --allow-code for this to work", "Custom code": "Run Python code. Advanced user only. Must run program with --allow-code for this to work",
"Prompt S/R": "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others", "Prompt S/R": "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others",
@ -65,14 +66,12 @@ titles = {
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.", "Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.", "Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg],[prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.", "Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle", "Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
"Loopback": "Performs img2img processing multiple times. Output images are used as input for the next loop.", "Loopback": "Process an image, use it as an input, repeat.",
"Loops": "How many times to process an image. Each output is used as the input of the next loop. If set to 1, behavior will be as if this script were not used.", "Loops": "How many times to repeat processing an image and using it as input for the next iteration",
"Final denoising strength": "The denoising strength for the final loop of each image in the batch.",
"Denoising strength curve": "The denoising curve controls the rate of denoising strength change each loop. Aggressive: Most of the change will happen towards the start of the loops. Linear: Change will be constant through all loops. Lazy: Most of the change will happen towards the end of the loops.",
"Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both", "Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both",
"Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both", "Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both",

View File

@ -11,7 +11,7 @@ function showModal(event) {
if (modalImage.style.display === 'none') { if (modalImage.style.display === 'none') {
lb.style.setProperty('background-image', 'url(' + source.src + ')'); lb.style.setProperty('background-image', 'url(' + source.src + ')');
} }
lb.style.display = "flex"; lb.style.display = "block";
lb.focus() lb.focus()
const tabTxt2Img = gradioApp().getElementById("tab_txt2img") const tabTxt2Img = gradioApp().getElementById("tab_txt2img")
@ -32,7 +32,13 @@ function negmod(n, m) {
function updateOnBackgroundChange() { function updateOnBackgroundChange() {
const modalImage = gradioApp().getElementById("modalImage") const modalImage = gradioApp().getElementById("modalImage")
if (modalImage && modalImage.offsetParent) { if (modalImage && modalImage.offsetParent) {
let currentButton = selected_gallery_button(); let allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
let currentButton = null
allcurrentButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
currentButton = elem;
}
})
if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) { if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
modalImage.src = currentButton.children[0].src; modalImage.src = currentButton.children[0].src;
@ -44,10 +50,22 @@ function updateOnBackgroundChange() {
} }
function modalImageSwitch(offset) { function modalImageSwitch(offset) {
var galleryButtons = all_gallery_buttons(); var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
var galleryButtons = []
allgalleryButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
galleryButtons.push(elem);
}
})
if (galleryButtons.length > 1) { if (galleryButtons.length > 1) {
var currentButton = selected_gallery_button(); var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
var currentButton = null
allcurrentButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
currentButton = elem;
}
})
var result = -1 var result = -1
galleryButtons.forEach(function(v, i) { galleryButtons.forEach(function(v, i) {
@ -118,15 +136,20 @@ function modalKeyHandler(event) {
} }
} }
function setupImageForLightbox(e) { function showGalleryImage() {
setTimeout(function() {
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
if (fullImg_preview != null) {
fullImg_preview.forEach(function function_name(e) {
if (e.dataset.modded) if (e.dataset.modded)
return; return;
e.dataset.modded = true; e.dataset.modded = true;
if(e && e.parentElement.tagName == 'DIV'){
e.style.cursor='pointer' e.style.cursor='pointer'
e.style.userSelect='none' e.style.userSelect='none'
var isFirefox = navigator.userAgent.toLowerCase().indexOf('firefox') > -1 var isFirefox = isFirefox = navigator.userAgent.toLowerCase().indexOf('firefox') > -1
// For Firefox, listening on click first switched to next image then shows the lightbox. // For Firefox, listening on click first switched to next image then shows the lightbox.
// If you know how to fix this without switching to mousedown event, please. // If you know how to fix this without switching to mousedown event, please.
@ -135,12 +158,15 @@ function setupImageForLightbox(e) {
e.addEventListener(event, function (evt) { e.addEventListener(event, function (evt) {
if(!opts.js_modal_lightbox || evt.button != 0) return; if(!opts.js_modal_lightbox || evt.button != 0) return;
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed) modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
evt.preventDefault() evt.preventDefault()
showModal(evt) showModal(evt)
}, true); }, true);
}
});
}
}, 100);
} }
function modalZoomSet(modalImage, enable) { function modalZoomSet(modalImage, enable) {
@ -173,21 +199,21 @@ function modalTileImageToggle(event) {
} }
function galleryImageHandler(e) { function galleryImageHandler(e) {
//if (e && e.parentElement.tagName == 'BUTTON') { if (e && e.parentElement.tagName == 'BUTTON') {
e.onclick = showGalleryImage; e.onclick = showGalleryImage;
//} }
} }
onUiUpdate(function() { onUiUpdate(function() {
fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img') fullImg_preview = gradioApp().querySelectorAll('img.w-full')
if (fullImg_preview != null) { if (fullImg_preview != null) {
fullImg_preview.forEach(setupImageForLightbox); fullImg_preview.forEach(galleryImageHandler);
} }
updateOnBackgroundChange(); updateOnBackgroundChange();
}) })
document.addEventListener("DOMContentLoaded", function() { document.addEventListener("DOMContentLoaded", function() {
//const modalFragment = document.createDocumentFragment(); const modalFragment = document.createDocumentFragment();
const modal = document.createElement('div') const modal = document.createElement('div')
modal.onclick = closeModal; modal.onclick = closeModal;
modal.id = "lightboxModal"; modal.id = "lightboxModal";
@ -251,9 +277,9 @@ document.addEventListener("DOMContentLoaded", function() {
modal.appendChild(modalNext) modal.appendChild(modalNext)
gradioApp().appendChild(modal)
gradioApp().getRootNode().appendChild(modal)
document.body.appendChild(modal); document.body.appendChild(modalFragment);
}); });

View File

@ -15,7 +15,7 @@ onUiUpdate(function(){
} }
} }
const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] div[id$="_results"] .thumbnail-item > img'); const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] img.h-full.w-full.overflow-hidden');
if (galleryPreviews == null) return; if (galleryPreviews == null) return;

View File

@ -1,13 +1,78 @@
// code related to showing and updating progressbar shown as the image is being made // code related to showing and updating progressbar shown as the image is being made
function rememberGallerySelection(id_gallery){
galleries = {}
storedGallerySelections = {}
galleryObservers = {}
function rememberGallerySelection(id_gallery){
storedGallerySelections[id_gallery] = getGallerySelectedIndex(id_gallery)
} }
function getGallerySelectedIndex(id_gallery){ function getGallerySelectedIndex(id_gallery){
let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item')
let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
let currentlySelectedIndex = -1
galleryButtons.forEach(function(v, i){ if(v==galleryBtnSelected) { currentlySelectedIndex = i } })
return currentlySelectedIndex
} }
// this is a workaround for https://github.com/gradio-app/gradio/issues/2984
function check_gallery(id_gallery){
let gallery = gradioApp().getElementById(id_gallery)
// if gallery has no change, no need to setting up observer again.
if (gallery && galleries[id_gallery] !== gallery){
galleries[id_gallery] = gallery;
if(galleryObservers[id_gallery]){
galleryObservers[id_gallery].disconnect();
}
storedGallerySelections[id_gallery] = -1
galleryObservers[id_gallery] = new MutationObserver(function (){
let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item')
let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
let currentlySelectedIndex = getGallerySelectedIndex(id_gallery)
prevSelectedIndex = storedGallerySelections[id_gallery]
storedGallerySelections[id_gallery] = -1
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
// automatically re-open previously selected index (if exists)
activeElement = gradioApp().activeElement;
let scrollX = window.scrollX;
let scrollY = window.scrollY;
galleryButtons[prevSelectedIndex].click();
showGalleryImage();
// When the gallery button is clicked, it gains focus and scrolls itself into view
// We need to scroll back to the previous position
setTimeout(function (){
window.scrollTo(scrollX, scrollY);
}, 50);
if(activeElement){
// i fought this for about an hour; i don't know why the focus is lost or why this helps recover it
// if someone has a better solution please by all means
setTimeout(function (){
activeElement.focus({
preventScroll: true // Refocus the element that was focused before the gallery was opened without scrolling to it
})
}, 1);
}
}
})
galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false })
}
}
onUiUpdate(function(){
check_gallery('txt2img_gallery')
check_gallery('img2img_gallery')
})
function request(url, data, handler, errorHandler){ function request(url, data, handler, errorHandler){
var xhr = new XMLHttpRequest(); var xhr = new XMLHttpRequest();
var url = url; var url = url;
@ -74,7 +139,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
var divProgress = document.createElement('div') var divProgress = document.createElement('div')
divProgress.className='progressDiv' divProgress.className='progressDiv'
divProgress.style.display = opts.show_progressbar ? "block" : "none" divProgress.style.display = opts.show_progressbar ? "" : "none"
var divInner = document.createElement('div') var divInner = document.createElement('div')
divInner.className='progress' divInner.className='progress'

View File

@ -7,31 +7,9 @@ function set_theme(theme){
} }
} }
function all_gallery_buttons() {
var allGalleryButtons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery].gradio-gallery .thumbnails > .thumbnail-item.thumbnail-small');
var visibleGalleryButtons = [];
allGalleryButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
visibleGalleryButtons.push(elem);
}
})
return visibleGalleryButtons;
}
function selected_gallery_button() {
var allCurrentButtons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery].gradio-gallery .thumbnail-item.thumbnail-small.selected');
var visibleCurrentButton = null;
allCurrentButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
visibleCurrentButton = elem;
}
})
return visibleCurrentButton;
}
function selected_gallery_index(){ function selected_gallery_index(){
var buttons = all_gallery_buttons(); var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item')
var button = selected_gallery_button(); var button = gradioApp().querySelector('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item.\\!ring-2')
var result = -1 var result = -1
buttons.forEach(function(v, i){ if(v==button) { result = i } }) buttons.forEach(function(v, i){ if(v==button) { result = i } })
@ -40,18 +18,14 @@ function selected_gallery_index(){
} }
function extract_image_from_gallery(gallery){ function extract_image_from_gallery(gallery){
if (gallery.length == 0){
return [null];
}
if(gallery.length == 1){ if(gallery.length == 1){
return [gallery[0]]; return [gallery[0]]
} }
index = selected_gallery_index() index = selected_gallery_index()
if (index < 0 || index >= gallery.length){ if (index < 0 || index >= gallery.length){
// Use the first image in the gallery as the default return [null]
index = 0;
} }
return [gallery[index]]; return [gallery[index]];
@ -112,7 +86,7 @@ function get_tab_index(tabId){
var res = 0 var res = 0
gradioApp().getElementById(tabId).querySelector('div').querySelectorAll('button').forEach(function(button, i){ gradioApp().getElementById(tabId).querySelector('div').querySelectorAll('button').forEach(function(button, i){
if(button.className.indexOf('selected') != -1) if(button.className.indexOf('bg-white') != -1)
res = i res = i
}) })
@ -217,28 +191,6 @@ function confirm_clear_prompt(prompt, negative_prompt) {
return [prompt, negative_prompt] return [prompt, negative_prompt]
} }
promptTokecountUpdateFuncs = {}
function recalculatePromptTokens(name){
if(promptTokecountUpdateFuncs[name]){
promptTokecountUpdateFuncs[name]()
}
}
function recalculate_prompts_txt2img(){
recalculatePromptTokens('txt2img_prompt')
recalculatePromptTokens('txt2img_neg_prompt')
return args_to_array(arguments);
}
function recalculate_prompts_img2img(){
recalculatePromptTokens('img2img_prompt')
recalculatePromptTokens('img2img_neg_prompt')
return args_to_array(arguments);
}
opts = {} opts = {}
onUiUpdate(function(){ onUiUpdate(function(){
if(Object.keys(opts).length != 0) return; if(Object.keys(opts).length != 0) return;
@ -280,11 +232,14 @@ onUiUpdate(function(){
return return
} }
prompt.parentElement.insertBefore(counter, prompt) prompt.parentElement.insertBefore(counter, prompt)
counter.classList.add("token-counter")
prompt.parentElement.style.position = "relative" prompt.parentElement.style.position = "relative"
promptTokecountUpdateFuncs[id] = function(){ update_token_counter(id_button); } textarea.addEventListener("input", function(){
textarea.addEventListener("input", promptTokecountUpdateFuncs[id]); update_token_counter(id_button);
});
} }
registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button') registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button')
@ -318,7 +273,7 @@ onOptionsChanged(function(){
let txt2img_textarea, img2img_textarea = undefined; let txt2img_textarea, img2img_textarea = undefined;
let wait_time = 800 let wait_time = 800
let token_timeouts = {}; let token_timeout;
function update_txt2img_tokens(...args) { function update_txt2img_tokens(...args) {
update_token_counter("txt2img_token_button") update_token_counter("txt2img_token_button")
@ -335,9 +290,9 @@ function update_img2img_tokens(...args) {
} }
function update_token_counter(button_id) { function update_token_counter(button_id) {
if (token_timeouts[button_id]) if (token_timeout)
clearTimeout(token_timeouts[button_id]); clearTimeout(token_timeout);
token_timeouts[button_id] = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
} }
function restart_reload(){ function restart_reload(){
@ -354,10 +309,3 @@ function updateInput(target){
Object.defineProperty(e, "target", {value: target}) Object.defineProperty(e, "target", {value: target})
target.dispatchEvent(e); target.dispatchEvent(e);
} }
var desiredCheckpointName = null;
function selectCheckpoint(name){
desiredCheckpointName = name;
gradioApp().getElementById('change_checkpoint').click()
}

141
launch.py
View File

@ -5,56 +5,16 @@ import sys
import importlib.util import importlib.util
import shlex import shlex
import platform import platform
import argparse
import json import json
from modules import cmd_args dir_repos = "repositories"
from modules.paths_internal import script_path, extensions_dir dir_extensions = "extensions"
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
sys.argv += shlex.split(commandline_args)
args, _ = cmd_args.parser.parse_known_args()
python = sys.executable python = sys.executable
git = os.environ.get('GIT', "git") git = os.environ.get('GIT', "git")
index_url = os.environ.get('INDEX_URL', "") index_url = os.environ.get('INDEX_URL', "")
stored_commit_hash = None stored_commit_hash = None
skip_install = False skip_install = False
dir_repos = "repositories"
if 'GRADIO_ANALYTICS_ENABLED' not in os.environ:
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
def check_python_version():
is_windows = platform.system() == "Windows"
major = sys.version_info.major
minor = sys.version_info.minor
micro = sys.version_info.micro
if is_windows:
supported_minors = [10]
else:
supported_minors = [7, 8, 9, 10, 11]
if not (major == 3 and minor in supported_minors):
import modules.errors
modules.errors.print_error_explanation(f"""
INCOMPATIBLE PYTHON VERSION
This program is tested with 3.10.6 Python, but you have {major}.{minor}.{micro}.
If you encounter an error with "RuntimeError: Couldn't install torch." message,
or any other error regarding unsuccessful package (library) installation,
please downgrade (or upgrade) to the latest version of 3.10 Python
and delete current Python and "venv" folder in WebUI's directory.
You can download 3.10 Python from here: https://www.python.org/downloads/release/python-3109/
{"Alternatively, use a binary release of WebUI: https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases" if is_windows else ""}
Use --skip-python-version-check to suppress this warning.
""")
def commit_hash(): def commit_hash():
@ -71,6 +31,23 @@ def commit_hash():
return stored_commit_hash return stored_commit_hash
def extract_arg(args, name):
return [x for x in args if x != name], name in args
def extract_opt(args, name):
opt = None
is_present = False
if name in args:
is_present = True
idx = args.index(name)
del args[idx]
if idx < len(args) and args[idx][0] != "-":
opt = args[idx]
del args[idx]
return args, is_present, opt
def run(command, desc=None, errdesc=None, custom_env=None, live=False): def run(command, desc=None, errdesc=None, custom_env=None, live=False):
if desc is not None: if desc is not None:
print(desc) print(desc)
@ -114,7 +91,7 @@ def is_installed(package):
def repo_dir(name): def repo_dir(name):
return os.path.join(script_path, dir_repos, name) return os.path.join(dir_repos, name)
def run_python(code, desc=None, errdesc=None): def run_python(code, desc=None, errdesc=None):
@ -154,16 +131,6 @@ def git_clone(url, dir, name, commithash=None):
run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}") run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
def git_pull_recursive(dir):
for subdir, _, _ in os.walk(dir):
if os.path.exists(os.path.join(subdir, '.git')):
try:
output = subprocess.check_output([git, '-C', subdir, 'pull', '--autostash'])
print(f"Pulled changes for repository in '{subdir}':\n{output.decode('utf-8').strip()}\n")
except subprocess.CalledProcessError as e:
print(f"Couldn't perform 'git pull' on repository in '{subdir}':\n{e.output.decode('utf-8').strip()}\n")
def version_check(commit): def version_check(commit):
try: try:
import requests import requests
@ -206,20 +173,16 @@ def list_extensions(settings_file):
print(e, file=sys.stderr) print(e, file=sys.stderr)
disabled_extensions = set(settings.get('disabled_extensions', [])) disabled_extensions = set(settings.get('disabled_extensions', []))
disable_all_extensions = settings.get('disable_all_extensions', 'none')
if disable_all_extensions != 'none': return [x for x in os.listdir(dir_extensions) if x not in disabled_extensions]
return []
return [x for x in os.listdir(extensions_dir) if x not in disabled_extensions]
def run_extensions_installers(settings_file): def run_extensions_installers(settings_file):
if not os.path.isdir(extensions_dir): if not os.path.isdir(dir_extensions):
return return
for dirname_extension in list_extensions(settings_file): for dirname_extension in list_extensions(settings_file):
run_extension_installer(os.path.join(extensions_dir, dirname_extension)) run_extension_installer(os.path.join(dir_extensions, dirname_extension))
def prepare_environment(): def prepare_environment():
@ -227,8 +190,8 @@ def prepare_environment():
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117") torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt") requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.16rc425')
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379") gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1") clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b") openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
@ -239,24 +202,37 @@ def prepare_environment():
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git') codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git') blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf") stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "47b6b607fdd31875c9279cd2f4f16b92e4ea958e")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6") taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec") k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af") codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9") blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
if not args.skip_python_version_check: sys.argv += shlex.split(commandline_args)
check_python_version()
parser = argparse.ArgumentParser()
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
args, _ = parser.parse_known_args(sys.argv)
sys.argv, _ = extract_arg(sys.argv, '-f')
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
sys.argv, reinstall_torch = extract_arg(sys.argv, '--reinstall-torch')
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
sys.argv, run_tests, test_dir = extract_opt(sys.argv, '--tests')
sys.argv, skip_install = extract_arg(sys.argv, '--skip-install')
xformers = '--xformers' in sys.argv
ngrok = '--ngrok' in sys.argv
commit = commit_hash() commit = commit_hash()
print(f"Python {sys.version}") print(f"Python {sys.version}")
print(f"Commit hash: {commit}") print(f"Commit hash: {commit}")
if args.reinstall_torch or not is_installed("torch") or not is_installed("torchvision"): if reinstall_torch or not is_installed("torch") or not is_installed("torchvision"):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True) run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True)
if not args.skip_torch_cuda_test: if not skip_torch_cuda_test:
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'") run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
if not is_installed("gfpgan"): if not is_installed("gfpgan"):
@ -268,22 +244,22 @@ def prepare_environment():
if not is_installed("open_clip"): if not is_installed("open_clip"):
run_pip(f"install {openclip_package}", "open_clip") run_pip(f"install {openclip_package}", "open_clip")
if (not is_installed("xformers") or args.reinstall_xformers) and args.xformers: if (not is_installed("xformers") or reinstall_xformers) and xformers:
if platform.system() == "Windows": if platform.system() == "Windows":
if platform.python_version().startswith("3.10"): if platform.python_version().startswith("3.10"):
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers") run_pip(f"install -U -I --no-deps xformers==0.0.16rc425", "xformers")
else: else:
print("Installation of xformers is not supported in this version of Python.") print("Installation of xformers is not supported in this version of Python.")
print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness") print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness")
if not is_installed("xformers"): if not is_installed("xformers"):
exit(0) exit(0)
elif platform.system() == "Linux": elif platform.system() == "Linux":
run_pip(f"install {xformers_package}", "xformers") run_pip("install xformers==0.0.16rc425", "xformers")
if not is_installed("pyngrok") and args.ngrok: if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok") run_pip("install pyngrok", "ngrok")
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True) os.makedirs(dir_repos, exist_ok=True)
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash) git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash) git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
@ -292,26 +268,21 @@ def prepare_environment():
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash) git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
if not is_installed("lpips"): if not is_installed("lpips"):
run_pip(f"install -r \"{os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}\"", "requirements for CodeFormer") run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
if not os.path.isfile(requirements_file): run_pip(f"install -r {requirements_file}", "requirements for Web UI")
requirements_file = os.path.join(script_path, requirements_file)
run_pip(f"install -r \"{requirements_file}\"", "requirements for Web UI")
run_extensions_installers(settings_file=args.ui_settings_file) run_extensions_installers(settings_file=args.ui_settings_file)
if args.update_check: if update_check:
version_check(commit) version_check(commit)
if args.update_all_extensions:
git_pull_recursive(extensions_dir)
if "--exit" in sys.argv: if "--exit" in sys.argv:
print("Exiting because of --exit argument") print("Exiting because of --exit argument")
exit(0) exit(0)
if args.tests and not args.no_tests: if run_tests:
exitcode = tests(args.tests) exitcode = tests(test_dir)
exit(exitcode) exit(exitcode)
@ -320,18 +291,16 @@ def tests(test_dir):
sys.argv.append("--api") sys.argv.append("--api")
if "--ckpt" not in sys.argv: if "--ckpt" not in sys.argv:
sys.argv.append("--ckpt") sys.argv.append("--ckpt")
sys.argv.append(os.path.join(script_path, "test/test_files/empty.pt")) sys.argv.append("./test/test_files/empty.pt")
if "--skip-torch-cuda-test" not in sys.argv: if "--skip-torch-cuda-test" not in sys.argv:
sys.argv.append("--skip-torch-cuda-test") sys.argv.append("--skip-torch-cuda-test")
if "--disable-nan-check" not in sys.argv: if "--disable-nan-check" not in sys.argv:
sys.argv.append("--disable-nan-check") sys.argv.append("--disable-nan-check")
if "--no-tests" not in sys.argv:
sys.argv.append("--no-tests")
print(f"Launching Web UI in another process for testing with arguments: {' '.join(sys.argv[1:])}") print(f"Launching Web UI in another process for testing with arguments: {' '.join(sys.argv[1:])}")
os.environ['COMMANDLINE_ARGS'] = "" os.environ['COMMANDLINE_ARGS'] = ""
with open(os.path.join(script_path, 'test/stdout.txt'), "w", encoding="utf8") as stdout, open(os.path.join(script_path, 'test/stderr.txt'), "w", encoding="utf8") as stderr: with open('test/stdout.txt', "w", encoding="utf8") as stdout, open('test/stderr.txt', "w", encoding="utf8") as stderr:
proc = subprocess.Popen([sys.executable, *sys.argv], stdout=stdout, stderr=stderr) proc = subprocess.Popen([sys.executable, *sys.argv], stdout=stdout, stderr=stderr)
import test.server_poll import test.server_poll

Binary file not shown.

View File

@ -3,15 +3,11 @@ import io
import time import time
import datetime import datetime
import uvicorn import uvicorn
import gradio as gr
from threading import Lock from threading import Lock
from io import BytesIO from io import BytesIO
from gradio.processing_utils import decode_base64_to_file from gradio.processing_utils import decode_base64_to_file
from fastapi import APIRouter, Depends, FastAPI, Request, Response from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials from fastapi.security import HTTPBasic, HTTPBasicCredentials
from fastapi.exceptions import HTTPException
from fastapi.responses import JSONResponse
from fastapi.encoders import jsonable_encoder
from secrets import compare_digest from secrets import compare_digest
import modules.shared as shared import modules.shared as shared
@ -22,8 +18,7 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_
from modules.textual_inversion.preprocess import preprocess from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights from modules.sd_models import checkpoints_list, find_checkpoint_config
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models from modules.realesrgan_model import get_realesrgan_models
from modules import devices from modules import devices
from typing import List from typing import List
@ -94,16 +89,6 @@ def encode_pil_to_base64(image):
return base64.b64encode(bytes_data) return base64.b64encode(bytes_data)
def api_middleware(app: FastAPI): def api_middleware(app: FastAPI):
rich_available = True
try:
import anyio # importing just so it can be placed on silent list
import starlette # importing just so it can be placed on silent list
from rich.console import Console
console = Console()
except:
import traceback
rich_available = False
@app.middleware("http") @app.middleware("http")
async def log_and_time(req: Request, call_next): async def log_and_time(req: Request, call_next):
ts = time.time() ts = time.time()
@ -124,36 +109,6 @@ def api_middleware(app: FastAPI):
)) ))
return res return res
def handle_exception(request: Request, e: Exception):
err = {
"error": type(e).__name__,
"detail": vars(e).get('detail', ''),
"body": vars(e).get('body', ''),
"errors": str(e),
}
print(f"API error: {request.method}: {request.url} {err}")
if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions
if rich_available:
console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
else:
traceback.print_exc()
return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err))
@app.middleware("http")
async def exception_handling(request: Request, call_next):
try:
return await call_next(request)
except Exception as e:
return handle_exception(request, e)
@app.exception_handler(Exception)
async def fastapi_exception_handler(request: Request, e: Exception):
return handle_exception(request, e)
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, e: HTTPException):
return handle_exception(request, e)
class Api: class Api:
def __init__(self, app: FastAPI, queue_lock: Lock): def __init__(self, app: FastAPI, queue_lock: Lock):
@ -194,12 +149,6 @@ class Api:
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse) self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse) self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse) self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList)
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
def add_api_route(self, path: str, endpoint, **kwargs): def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth: if shared.cmd_opts.api_auth:
@ -213,111 +162,47 @@ class Api:
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"}) raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
def get_selectable_script(self, script_name, script_runner): def get_script(self, script_name, script_runner):
if script_name is None or script_name == "": if script_name is None:
return None, None return None, None
if not script_runner.scripts:
script_runner.initialize_scripts(False)
ui.create_ui()
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
script = script_runner.selectable_scripts[script_idx] script = script_runner.selectable_scripts[script_idx]
return script, script_idx return script, script_idx
def get_scripts_list(self):
t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles]
i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles]
return ScriptsList(txt2img = t2ilist, img2img = i2ilist)
def get_script(self, script_name, script_runner):
if script_name is None or script_name == "":
return None, None
script_idx = script_name_to_index(script_name, script_runner.scripts)
return script_runner.scripts[script_idx]
def init_default_script_args(self, script_runner):
#find max idx from the scripts in runner and generate a none array to init script_args
last_arg_index = 1
for script in script_runner.scripts:
if last_arg_index < script.args_to:
last_arg_index = script.args_to
# None everywhere except position 0 to initialize script args
script_args = [None]*last_arg_index
script_args[0] = 0
# get default values
with gr.Blocks(): # will throw errors calling ui function without this
for script in script_runner.scripts:
if script.ui(script.is_img2img):
ui_default_values = []
for elem in script.ui(script.is_img2img):
ui_default_values.append(elem.value)
script_args[script.args_from:script.args_to] = ui_default_values
return script_args
def init_script_args(self, request, default_script_args, selectable_scripts, selectable_idx, script_runner):
script_args = default_script_args.copy()
# position 0 in script_arg is the idx+1 of the selectable script that is going to be run when using scripts.scripts_*2img.run()
if selectable_scripts:
script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args
script_args[0] = selectable_idx + 1
# Now check for always on scripts
if request.alwayson_scripts and (len(request.alwayson_scripts) > 0):
for alwayson_script_name in request.alwayson_scripts.keys():
alwayson_script = self.get_script(alwayson_script_name, script_runner)
if alwayson_script == None:
raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found")
# Selectable script in always on script param check
if alwayson_script.alwayson == False:
raise HTTPException(status_code=422, detail=f"Cannot have a selectable script in the always on scripts params")
# always on script with no arg should always run so you don't really need to add them to the requests
if "args" in request.alwayson_scripts[alwayson_script_name]:
script_args[alwayson_script.args_from:alwayson_script.args_to] = request.alwayson_scripts[alwayson_script_name]["args"]
return script_args
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
script_runner = scripts.scripts_txt2img script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
if not script_runner.scripts:
script_runner.initialize_scripts(False)
ui.create_ui()
if not self.default_script_arg_txt2img:
self.default_script_arg_txt2img = self.init_default_script_args(script_runner)
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
populate = txt2imgreq.copy(update={ # Override __init__ params populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index), "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
"do_not_save_samples": not txt2imgreq.save_images, "do_not_save_samples": True,
"do_not_save_grid": not txt2imgreq.save_images, "do_not_save_grid": True
}) }
)
if populate.sampler_name: if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on populate.sampler_index = None # prevent a warning later on
args = vars(populate) args = vars(populate)
args.pop('script_name', None) args.pop('script_name', None)
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
args.pop('alwayson_scripts', None)
script_args = self.init_script_args(txt2imgreq, self.default_script_arg_txt2img, selectable_scripts, selectable_script_idx, script_runner)
send_images = args.pop('send_images', True)
args.pop('save_images', None)
with self.queue_lock: with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
p.scripts = script_runner
p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples
shared.state.begin() shared.state.begin()
if selectable_scripts != None: if script is not None:
p.script_args = script_args p.outpath_grids = opts.outdir_txt2img_grids
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here p.outpath_samples = opts.outdir_txt2img_samples
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args)
else: else:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p) processed = process_images(p)
shared.state.end() shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] b64images = list(map(encode_pil_to_base64, processed.images))
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
@ -326,55 +211,41 @@ class Api:
if init_images is None: if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found") raise HTTPException(status_code=404, detail="Init image not found")
script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
mask = img2imgreq.mask mask = img2imgreq.mask
if mask: if mask:
mask = decode_base64_to_image(mask) mask = decode_base64_to_image(mask)
script_runner = scripts.scripts_img2img
if not script_runner.scripts:
script_runner.initialize_scripts(True)
ui.create_ui()
if not self.default_script_arg_img2img:
self.default_script_arg_img2img = self.init_default_script_args(script_runner)
selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)
populate = img2imgreq.copy(update={ # Override __init__ params populate = img2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index), "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
"do_not_save_samples": not img2imgreq.save_images, "do_not_save_samples": True,
"do_not_save_grid": not img2imgreq.save_images, "do_not_save_grid": True,
"mask": mask, "mask": mask
}) }
)
if populate.sampler_name: if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on populate.sampler_index = None # prevent a warning later on
args = vars(populate) args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine. args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None) args.pop('script_name', None)
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
args.pop('alwayson_scripts', None)
script_args = self.init_script_args(img2imgreq, self.default_script_arg_img2img, selectable_scripts, selectable_script_idx, script_runner)
send_images = args.pop('send_images', True)
args.pop('save_images', None)
with self.queue_lock: with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args) p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
p.init_images = [decode_base64_to_image(x) for x in init_images] p.init_images = [decode_base64_to_image(x) for x in init_images]
p.scripts = script_runner
p.outpath_grids = opts.outdir_img2img_grids
p.outpath_samples = opts.outdir_img2img_samples
shared.state.begin() shared.state.begin()
if selectable_scripts != None: if script is not None:
p.script_args = script_args p.outpath_grids = opts.outdir_img2img_grids
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here p.outpath_samples = opts.outdir_img2img_samples
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
processed = scripts.scripts_img2img.run(p, *p.script_args)
else: else:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p) processed = process_images(p)
shared.state.end() shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] b64images = list(map(encode_pil_to_base64, processed.images))
if not img2imgreq.include_init_images: if not img2imgreq.include_init_images:
img2imgreq.init_images = None img2imgreq.init_images = None
@ -476,16 +347,6 @@ class Api:
return {} return {}
def unloadapi(self):
unload_model_weights()
return {}
def reloadapi(self):
reload_model_weights()
return {}
def skip(self): def skip(self):
shared.state.skip() shared.state.skip()
@ -526,7 +387,7 @@ class Api:
] ]
def get_sd_models(self): def get_sd_models(self):
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()] return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
def get_hypernetworks(self): def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
@ -636,7 +497,7 @@ class Api:
if not apply_optimizations: if not apply_optimizations:
sd_hijack.undo_optimizations() sd_hijack.undo_optimizations()
try: try:
hypernetwork, filename = train_hypernetwork(**args) hypernetwork, filename = train_hypernetwork(*args)
except Exception as e: except Exception as e:
error = e error = e
finally: finally:

View File

@ -14,8 +14,8 @@ API_NOT_ALLOWED = [
"outpath_samples", "outpath_samples",
"outpath_grids", "outpath_grids",
"sampler_index", "sampler_index",
# "do_not_save_samples", "do_not_save_samples",
# "do_not_save_grid", "do_not_save_grid",
"extra_generation_params", "extra_generation_params",
"overlay_images", "overlay_images",
"do_not_reload_embeddings", "do_not_reload_embeddings",
@ -100,31 +100,13 @@ class PydanticModelGenerator:
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img", "StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img, StableDiffusionProcessingTxt2Img,
[ [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
{"key": "sampler_index", "type": str, "default": "Euler"},
{"key": "script_name", "type": str, "default": None},
{"key": "script_args", "type": list, "default": []},
{"key": "send_images", "type": bool, "default": True},
{"key": "save_images", "type": bool, "default": False},
{"key": "alwayson_scripts", "type": dict, "default": {}},
]
).generate_model() ).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img", "StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img, StableDiffusionProcessingImg2Img,
[ [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
{"key": "sampler_index", "type": str, "default": "Euler"},
{"key": "init_images", "type": list, "default": None},
{"key": "denoising_strength", "type": float, "default": 0.75},
{"key": "mask", "type": str, "default": None},
{"key": "include_init_images", "type": bool, "default": False, "exclude" : True},
{"key": "script_name", "type": str, "default": None},
{"key": "script_args", "type": list, "default": []},
{"key": "send_images", "type": bool, "default": True},
{"key": "save_images", "type": bool, "default": False},
{"key": "alwayson_scripts", "type": dict, "default": {}},
]
).generate_model() ).generate_model()
class TextToImageResponse(BaseModel): class TextToImageResponse(BaseModel):
@ -246,7 +228,7 @@ class SDModelItem(BaseModel):
hash: Optional[str] = Field(title="Short hash") hash: Optional[str] = Field(title="Short hash")
sha256: Optional[str] = Field(title="sha256 hash") sha256: Optional[str] = Field(title="sha256 hash")
filename: str = Field(title="Filename") filename: str = Field(title="Filename")
config: Optional[str] = Field(title="Config file") config: str = Field(title="Config file")
class HypernetworkItem(BaseModel): class HypernetworkItem(BaseModel):
name: str = Field(title="Name") name: str = Field(title="Name")
@ -285,7 +267,3 @@ class EmbeddingsResponse(BaseModel):
class MemoryResponse(BaseModel): class MemoryResponse(BaseModel):
ram: dict = Field(title="RAM", description="System memory stats") ram: dict = Field(title="RAM", description="System memory stats")
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats") cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
class ScriptsList(BaseModel):
txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)")
img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)")

View File

@ -1,103 +0,0 @@
import argparse
import os
from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir, sd_default_config, sd_model_file
parser = argparse.ArgumentParser()
parser.add_argument("-f", action='store_true', help=argparse.SUPPRESS) # allows running as root; implemented outside of webui
parser.add_argument("--update-all-extensions", action='store_true', help="launch.py argument: download updates for all extensions when starting the program")
parser.add_argument("--skip-python-version-check", action='store_true', help="launch.py argument: do not check python version")
parser.add_argument("--skip-torch-cuda-test", action='store_true', help="launch.py argument: do not check if CUDA is able to work properly")
parser.add_argument("--reinstall-xformers", action='store_true', help="launch.py argument: install the appropriate version of xformers even if you have some version already installed")
parser.add_argument("--reinstall-torch", action='store_true', help="launch.py argument: install the appropriate version of torch even if you have some version already installed")
parser.add_argument("--update-check", action='store_true', help="launch.py argument: chck for updates at startup")
parser.add_argument("--tests", type=str, default=None, help="launch.py argument: run tests in the specified directory")
parser.add_argument("--no-tests", action='store_true', help="launch.py argument: do not run tests even if --tests option is specified")
parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages")
parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored")
parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
parser.add_argument("--vae-dir", type=str, default=None, help="Path to directory with VAE files")
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(data_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
parser.add_argument("--enable-insecure-extension-access", action='store_true', help="enable extensions tab regardless of other options")
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--xformers-flash-attention", action='store_true', help="enable xformers with Flash Attention to improve reproducibility (supported for SD2.x or variant only)")
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--opt-sdp-attention", action='store_true', help="enable scaled dot product cross-attention layer optimization; requires PyTorch 2.*")
parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="enable scaled dot product cross-attention layer optimization without memory efficient attention, makes image generation deterministic; requires PyTorch 2.*")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, 'ui-config.json'))
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--gradio-auth-path", type=str, help='set gradio authentication file path ex. "/path/to/auth/file" same auth format as --gradio-auth', default=None)
parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything')
parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(data_path, 'styles.csv'))
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
parser.add_argument('--vae-path', type=str, help='Checkpoint to use as VAE; setting this argument disables all settings related to VAE', default=None)
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(s) in the form of a comma-separated list (no spaces)", default=None)
parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
parser.add_argument("--gradio-queue", action='store_true', help="does not do anything", default=True)
parser.add_argument("--no-gradio-queue", action='store_true', help="Disables gradio queue; causes the webpage to use http requests instead of websockets; was the defaul in earlier versions")
parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers")
parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False)
parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)

View File

@ -8,7 +8,7 @@ import torch
import modules.face_restoration import modules.face_restoration
import modules.shared import modules.shared
from modules import shared, devices, modelloader from modules import shared, devices, modelloader
from modules.paths import models_path from modules.paths import script_path, models_path
# codeformer people made a choice to include modified basicsr library to their project which makes # codeformer people made a choice to include modified basicsr library to their project which makes
# it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN. # it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN.
@ -55,7 +55,7 @@ def setup_model(dirname):
if self.net is not None and self.face_helper is not None: if self.net is not None and self.face_helper is not None:
self.net.to(devices.device_codeformer) self.net.to(devices.device_codeformer)
return self.net, self.face_helper return self.net, self.face_helper
model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth', ext_filter=['.pth']) model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth')
if len(model_paths) != 0: if len(model_paths) != 0:
ckpt_path = model_paths[0] ckpt_path = model_paths[0]
else: else:

View File

@ -2,8 +2,6 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from modules import devices
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more # see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
@ -198,7 +196,7 @@ class DeepDanbooruModel(nn.Module):
t_358, = inputs t_358, = inputs
t_359 = t_358.permute(*[0, 3, 1, 2]) t_359 = t_358.permute(*[0, 3, 1, 2])
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0) t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded) t_360 = self.n_Conv_0(t_359_padded)
t_361 = F.relu(t_360) t_361 = F.relu(t_360)
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf')) t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
t_362 = self.n_MaxPool_0(t_361) t_362 = self.n_MaxPool_0(t_361)

View File

@ -1,17 +1,21 @@
import sys import sys, os, shlex
import contextlib import contextlib
import torch import torch
from modules import errors from modules import errors
from packaging import version
if sys.platform == "darwin":
from modules import mac_specific
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility
def has_mps() -> bool: def has_mps() -> bool:
if sys.platform != "darwin": if not getattr(torch, 'has_mps', False):
return False return False
else: try:
return mac_specific.has_mps torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
def extract_device_id(args, name): def extract_device_id(args, name):
for x in range(len(args)): for x in range(len(args)):
@ -30,18 +34,14 @@ def get_cuda_device_string():
return "cuda" return "cuda"
def get_optimal_device_name(): def get_optimal_device():
if torch.cuda.is_available(): if torch.cuda.is_available():
return get_cuda_device_string() return torch.device(get_cuda_device_string())
if has_mps(): if has_mps():
return "mps" return torch.device("mps")
return "cpu" return cpu
def get_optimal_device():
return torch.device(get_optimal_device_name())
def get_device_for(task): def get_device_for(task):
@ -79,16 +79,6 @@ cpu = torch.device("cpu")
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
dtype = torch.float16 dtype = torch.float16
dtype_vae = torch.float16 dtype_vae = torch.float16
dtype_unet = torch.float16
unet_needs_upcast = False
def cond_cast_unet(input):
return input.to(dtype_unet) if unet_needs_upcast else input
def cond_cast_float(input):
return input.float() if unet_needs_upcast else input
def randn(seed, shape): def randn(seed, shape):
@ -116,10 +106,6 @@ def autocast(disable=False):
return torch.autocast("cuda") return torch.autocast("cuda")
def without_autocast(disable=False):
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()
class NansException(Exception): class NansException(Exception):
pass pass
@ -137,7 +123,7 @@ def test_for_nans(x, where):
message = "A tensor with all NaNs was produced in Unet." message = "A tensor with all NaNs was produced in Unet."
if not shared.cmd_opts.no_half: if not shared.cmd_opts.no_half:
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this." message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try using --no-half commandline argument to fix this."
elif where == "vae": elif where == "vae":
message = "A tensor with all NaNs was produced in VAE." message = "A tensor with all NaNs was produced in VAE."
@ -147,6 +133,60 @@ def test_for_nans(x, where):
else: else:
message = "A tensor with all NaNs was produced." message = "A tensor with all NaNs was produced."
message += " Use --disable-nan-check commandline argument to disable this check."
raise NansException(message) raise NansException(message)
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
orig_tensor_to = torch.Tensor.to
def tensor_to_fix(self, *args, **kwargs):
if self.device.type != 'mps' and \
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
self = self.contiguous()
return orig_tensor_to(self, *args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
orig_layer_norm = torch.nn.functional.layer_norm
def layer_norm_fix(*args, **kwargs):
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
args = list(args)
args[0] = args[0].contiguous()
return orig_layer_norm(*args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
orig_tensor_numpy = torch.Tensor.numpy
def numpy_fix(self, *args, **kwargs):
if self.requires_grad:
self = self.detach()
return orig_tensor_numpy(self, *args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
orig_cumsum = torch.cumsum
orig_Tensor_cumsum = torch.Tensor.cumsum
def cumsum_fix(input, cumsum_func, *args, **kwargs):
if input.device.type == 'mps':
output_dtype = kwargs.get('dtype', input.dtype)
if output_dtype == torch.int64:
return cumsum_func(input.cpu(), *args, **kwargs).to(input.device)
elif cumsum_needs_bool_fix and output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16):
return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64)
return cumsum_func(input, *args, **kwargs)
if has_mps():
if version.parse(torch.__version__) < version.parse("1.13"):
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
torch.Tensor.to = tensor_to_fix
torch.nn.functional.layer_norm = layer_norm_fix
torch.Tensor.numpy = numpy_fix
elif version.parse(torch.__version__) > version.parse("1.13.1"):
cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0))
cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0))
torch.cumsum = lambda input, *args, **kwargs: ( cumsum_fix(input, orig_cumsum, *args, **kwargs) )
torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) )
orig_narrow = torch.narrow
torch.narrow = lambda *args, **kwargs: ( orig_narrow(*args, **kwargs).clone() )

View File

@ -1,6 +1,5 @@
# this file is adapted from https://github.com/victorca25/iNNfer # this file is adapted from https://github.com/victorca25/iNNfer
from collections import OrderedDict
import math import math
import functools import functools
import torch import torch

View File

@ -2,24 +2,16 @@ import os
import sys import sys
import traceback import traceback
import time
import git import git
from modules import shared from modules import paths, shared
from modules.paths_internal import extensions_dir, extensions_builtin_dir
extensions = [] extensions = []
extensions_dir = os.path.join(paths.script_path, "extensions")
if not os.path.exists(extensions_dir): extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin")
os.makedirs(extensions_dir)
def active(): def active():
if shared.opts.disable_all_extensions == "all":
return []
elif shared.opts.disable_all_extensions == "extra":
return [x for x in extensions if x.enabled and x.is_builtin]
else:
return [x for x in extensions if x.enabled] return [x for x in extensions if x.enabled]
@ -31,34 +23,21 @@ class Extension:
self.status = '' self.status = ''
self.can_update = False self.can_update = False
self.is_builtin = is_builtin self.is_builtin = is_builtin
self.version = ''
self.remote = None
self.have_info_from_repo = False
def read_info_from_repo(self):
if self.have_info_from_repo:
return
self.have_info_from_repo = True
repo = None repo = None
try: try:
if os.path.exists(os.path.join(self.path, ".git")): if os.path.exists(os.path.join(path, ".git")):
repo = git.Repo(self.path) repo = git.Repo(path)
except Exception: except Exception:
print(f"Error reading github repository info from {self.path}:", file=sys.stderr) print(f"Error reading github repository info from {path}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
if repo is None or repo.bare: if repo is None or repo.bare:
self.remote = None self.remote = None
else: else:
try: try:
self.status = 'unknown'
self.remote = next(repo.remote().urls, None) self.remote = next(repo.remote().urls, None)
head = repo.head.commit self.status = 'unknown'
ts = time.asctime(time.gmtime(repo.head.commit.committed_date))
self.version = f'{head.hexsha[:8]} ({ts})'
except Exception: except Exception:
self.remote = None self.remote = None
@ -79,7 +58,7 @@ class Extension:
def check_updates(self): def check_updates(self):
repo = git.Repo(self.path) repo = git.Repo(self.path)
for fetch in repo.remote().fetch(dry_run=True): for fetch in repo.remote().fetch("--dry-run"):
if fetch.flags != fetch.HEAD_UPTODATE: if fetch.flags != fetch.HEAD_UPTODATE:
self.can_update = True self.can_update = True
self.status = "behind" self.status = "behind"
@ -92,8 +71,8 @@ class Extension:
repo = git.Repo(self.path) repo = git.Repo(self.path)
# Fix: `error: Your local changes to the following files would be overwritten by merge`, # Fix: `error: Your local changes to the following files would be overwritten by merge`,
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error. # because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
repo.git.fetch(all=True) repo.git.fetch('--all')
repo.git.reset('origin', hard=True) repo.git.reset('--hard', 'origin')
def list_extensions(): def list_extensions():
@ -102,12 +81,7 @@ def list_extensions():
if not os.path.isdir(extensions_dir): if not os.path.isdir(extensions_dir):
return return
if shared.opts.disable_all_extensions == "all": paths = []
print("*** \"Disable all extensions\" option was set, will not load any extensions ***")
elif shared.opts.disable_all_extensions == "extra":
print("*** \"Disable all extensions\" option was set, will only load built-in extensions ***")
extension_paths = []
for dirname in [extensions_dir, extensions_builtin_dir]: for dirname in [extensions_dir, extensions_builtin_dir]:
if not os.path.isdir(dirname): if not os.path.isdir(dirname):
return return
@ -117,8 +91,9 @@ def list_extensions():
if not os.path.isdir(path): if not os.path.isdir(path):
continue continue
extension_paths.append((extension_dirname, path, dirname == extensions_builtin_dir)) paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
for dirname, path, is_builtin in extension_paths: for dirname, path, is_builtin in paths:
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin) extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)
extensions.append(extension) extensions.append(extension)

View File

@ -1,4 +1,4 @@
from modules import extra_networks, shared, extra_networks from modules import extra_networks
from modules.hypernetworks import hypernetwork from modules.hypernetworks import hypernetwork
@ -7,12 +7,6 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
super().__init__('hypernet') super().__init__('hypernet')
def activate(self, p, params_list): def activate(self, p, params_list):
additional = shared.opts.sd_hypernetwork
if additional != "" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = [] names = []
multipliers = [] multipliers = []
for params in params_list: for params in params_list:

View File

@ -6,7 +6,7 @@ import shutil
import torch import torch
import tqdm import tqdm
from modules import shared, images, sd_models, sd_vae, sd_models_config from modules import shared, images, sd_models, sd_vae
from modules.ui_common import plaintext_to_html from modules.ui_common import plaintext_to_html
import gradio as gr import gradio as gr
import safetensors.torch import safetensors.torch
@ -37,7 +37,7 @@ def run_pnginfo(image):
def create_config(ckpt_result, config_source, a, b, c): def create_config(ckpt_result, config_source, a, b, c):
def config(x): def config(x):
res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None res = sd_models.find_checkpoint_config(x) if x else None
return res if res != shared.sd_default_config else None return res if res != shared.sd_default_config else None
if config_source == 0: if config_source == 0:
@ -132,7 +132,6 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None
result_is_inpainting_model = False result_is_inpainting_model = False
result_is_instruct_pix2pix_model = False
if theta_func2: if theta_func2:
shared.state.textinfo = f"Loading B" shared.state.textinfo = f"Loading B"
@ -186,14 +185,9 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]: if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
if a.shape[1] == 4 and b.shape[1] == 9: if a.shape[1] == 4 and b.shape[1] == 9:
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.") raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
if a.shape[1] == 4 and b.shape[1] == 8:
raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.")
if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model...
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch.
result_is_instruct_pix2pix_model = True
else:
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}" assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier) theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
result_is_inpainting_model = True result_is_inpainting_model = True
else: else:
@ -232,7 +226,6 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
filename = filename_generator() if custom_name == '' else custom_name filename = filename_generator() if custom_name == '' else custom_name
filename += ".inpainting" if result_is_inpainting_model else "" filename += ".inpainting" if result_is_inpainting_model else ""
filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else ""
filename += "." + checkpoint_format filename += "." + checkpoint_format
output_modelname = os.path.join(ckpt_dir, filename) output_modelname = os.path.join(ckpt_dir, filename)

View File

@ -1,5 +1,4 @@
import base64 import base64
import html
import io import io
import math import math
import os import os
@ -7,34 +6,24 @@ import re
from pathlib import Path from pathlib import Path
import gradio as gr import gradio as gr
from modules.paths import data_path from modules.shared import script_path
from modules import shared, ui_tempdir, script_callbacks from modules import shared, ui_tempdir, script_callbacks
import tempfile import tempfile
from PIL import Image from PIL import Image
re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)' re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code) re_param = re.compile(re_param_code)
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
re_imagesize = re.compile(r"^(\d+)x(\d+)$") re_imagesize = re.compile(r"^(\d+)x(\d+)$")
re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$") re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$")
type_of_gr_update = type(gr.update()) type_of_gr_update = type(gr.update())
paste_fields = {} paste_fields = {}
registered_param_bindings = [] bind_list = []
class ParamBinding:
def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=[]):
self.paste_button = paste_button
self.tabname = tabname
self.source_text_component = source_text_component
self.source_image_component = source_image_component
self.source_tabname = source_tabname
self.override_settings_component = override_settings_component
self.paste_field_names = paste_field_names
def reset(): def reset():
paste_fields.clear() paste_fields.clear()
bind_list.clear()
def quote(text): def quote(text):
@ -75,8 +64,8 @@ def image_from_url_text(filedata):
return image return image
def add_paste_fields(tabname, init_img, fields, override_settings_component=None): def add_paste_fields(tabname, init_img, fields):
paste_fields[tabname] = {"init_img": init_img, "fields": fields, "override_settings_component": override_settings_component} paste_fields[tabname] = {"init_img": init_img, "fields": fields}
# backwards compatibility for existing extensions # backwards compatibility for existing extensions
import modules.ui import modules.ui
@ -86,6 +75,26 @@ def add_paste_fields(tabname, init_img, fields, override_settings_component=None
modules.ui.img2img_paste_fields = fields modules.ui.img2img_paste_fields = fields
def integrate_settings_paste_fields(component_dict):
from modules import ui
settings_map = {
'CLIP_stop_at_last_layers': 'Clip skip',
'inpainting_mask_weight': 'Conditional mask weight',
'sd_model_checkpoint': 'Model hash',
'eta_noise_seed_delta': 'ENSD',
'initial_noise_multiplier': 'Noise multiplier',
}
settings_paste_fields = [
(component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None)))
for k, v in settings_map.items()
]
for tabname, info in paste_fields.items():
if info["fields"] is not None:
info["fields"] += settings_paste_fields
def create_buttons(tabs_list): def create_buttons(tabs_list):
buttons = {} buttons = {}
for tab in tabs_list: for tab in tabs_list:
@ -93,61 +102,9 @@ def create_buttons(tabs_list):
return buttons return buttons
#if send_generate_info is a tab name, mean generate_info comes from the params fields of the tab
def bind_buttons(buttons, send_image, send_generate_info): def bind_buttons(buttons, send_image, send_generate_info):
"""old function for backwards compatibility; do not use this, use register_paste_params_button""" bind_list.append([buttons, send_image, send_generate_info])
for tabname, button in buttons.items():
source_text_component = send_generate_info if isinstance(send_generate_info, gr.components.Component) else None
source_tabname = send_generate_info if isinstance(send_generate_info, str) else None
register_paste_params_button(ParamBinding(paste_button=button, tabname=tabname, source_text_component=source_text_component, source_image_component=send_image, source_tabname=source_tabname))
def register_paste_params_button(binding: ParamBinding):
registered_param_bindings.append(binding)
def connect_paste_params_buttons():
binding: ParamBinding
for binding in registered_param_bindings:
destination_image_component = paste_fields[binding.tabname]["init_img"]
fields = paste_fields[binding.tabname]["fields"]
override_settings_component = binding.override_settings_component or paste_fields[binding.tabname]["override_settings_component"]
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
if binding.source_image_component and destination_image_component:
if isinstance(binding.source_image_component, gr.Gallery):
func = send_image_and_dimensions if destination_width_component else image_from_url_text
jsfunc = "extract_image_from_gallery"
else:
func = send_image_and_dimensions if destination_width_component else lambda x: x
jsfunc = None
binding.paste_button.click(
fn=func,
_js=jsfunc,
inputs=[binding.source_image_component],
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
)
if binding.source_text_component is not None and fields is not None:
connect_paste(binding.paste_button, fields, binding.source_text_component, override_settings_component, binding.tabname)
if binding.source_tabname is not None and fields is not None:
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else []) + binding.paste_field_names
binding.paste_button.click(
fn=lambda *x: x,
inputs=[field for field, name in paste_fields[binding.source_tabname]["fields"] if name in paste_field_names],
outputs=[field for field, name in fields if name in paste_field_names],
)
binding.paste_button.click(
fn=None,
_js=f"switch_to_{binding.tabname}",
inputs=None,
outputs=None,
)
def send_image_and_dimensions(x): def send_image_and_dimensions(x):
@ -166,6 +123,49 @@ def send_image_and_dimensions(x):
return img, w, h return img, w, h
def run_bind():
for buttons, source_image_component, send_generate_info in bind_list:
for tab in buttons:
button = buttons[tab]
destination_image_component = paste_fields[tab]["init_img"]
fields = paste_fields[tab]["fields"]
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
if source_image_component and destination_image_component:
if isinstance(source_image_component, gr.Gallery):
func = send_image_and_dimensions if destination_width_component else image_from_url_text
jsfunc = "extract_image_from_gallery"
else:
func = send_image_and_dimensions if destination_width_component else lambda x: x
jsfunc = None
button.click(
fn=func,
_js=jsfunc,
inputs=[source_image_component],
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
)
if send_generate_info and fields is not None:
if send_generate_info in paste_fields:
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
button.click(
fn=lambda *x: x,
inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names],
outputs=[field for field, name in fields if name in paste_field_names],
)
else:
connect_paste(button, fields, send_generate_info)
button.click(
fn=None,
_js=f"switch_to_{tab}",
inputs=None,
outputs=None,
)
def find_hypernetwork_key(hypernet_name, hypernet_hash=None): def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
"""Determines the config parameter name to use for the hypernet based on the parameters in the infotext. """Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
@ -243,7 +243,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
done_with_prompt = False done_with_prompt = False
*lines, lastline = x.strip().split("\n") *lines, lastline = x.strip().split("\n")
if len(re_param.findall(lastline)) < 3: if not re_params.match(lastline):
lines.append(lastline) lines.append(lastline)
lastline = '' lastline = ''
@ -262,7 +262,6 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
res["Negative prompt"] = negative_prompt res["Negative prompt"] = negative_prompt
for k, v in re_param.findall(lastline): for k, v in re_param.findall(lastline):
v = v[1:-1] if v[0] == '"' and v[-1] == '"' else v
m = re_imagesize.match(v) m = re_imagesize.match(v)
if m is not None: if m is not None:
res[k+"-1"] = m.group(1) res[k+"-1"] = m.group(1)
@ -287,59 +286,10 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
return res return res
settings_map = {} def connect_paste(button, paste_fields, input_comp, jsfunc=None):
infotext_to_setting_name_mapping = [
('Clip skip', 'CLIP_stop_at_last_layers', ),
('Conditional mask weight', 'inpainting_mask_weight'),
('Model hash', 'sd_model_checkpoint'),
('ENSD', 'eta_noise_seed_delta'),
('Noise multiplier', 'initial_noise_multiplier'),
('Eta', 'eta_ancestral'),
('Eta DDIM', 'eta_ddim'),
('Discard penultimate sigma', 'always_discard_next_to_last_sigma'),
('UniPC variant', 'uni_pc_variant'),
('UniPC skip type', 'uni_pc_skip_type'),
('UniPC order', 'uni_pc_order'),
('UniPC lower order final', 'uni_pc_lower_order_final'),
]
def create_override_settings_dict(text_pairs):
"""creates processing's override_settings parameters from gradio's multiselect
Example input:
['Clip skip: 2', 'Model hash: e6e99610c4', 'ENSD: 31337']
Example output:
{'CLIP_stop_at_last_layers': 2, 'sd_model_checkpoint': 'e6e99610c4', 'eta_noise_seed_delta': 31337}
"""
res = {}
params = {}
for pair in text_pairs:
k, v = pair.split(":", maxsplit=1)
params[k] = v.strip()
for param_name, setting_name in infotext_to_setting_name_mapping:
value = params.get(param_name, None)
if value is None:
continue
res[setting_name] = shared.opts.cast_value(setting_name, value)
return res
def connect_paste(button, paste_fields, input_comp, override_settings_component, tabname):
def paste_func(prompt): def paste_func(prompt):
if not prompt and not shared.cmd_opts.hide_ui_dir_config: if not prompt and not shared.cmd_opts.hide_ui_dir_config:
filename = os.path.join(data_path, "params.txt") filename = os.path.join(script_path, "params.txt")
if os.path.exists(filename): if os.path.exists(filename):
with open(filename, "r", encoding="utf8") as file: with open(filename, "r", encoding="utf8") as file:
prompt = file.read() prompt = file.read()
@ -373,42 +323,11 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
return res return res
if override_settings_component is not None:
def paste_settings(params):
vals = {}
for param_name, setting_name in infotext_to_setting_name_mapping:
v = params.get(param_name, None)
if v is None:
continue
if setting_name == "sd_model_checkpoint" and shared.opts.disable_weights_auto_swap:
continue
v = shared.opts.cast_value(setting_name, v)
current_value = getattr(shared.opts, setting_name, None)
if v == current_value:
continue
vals[param_name] = v
vals_pairs = [f"{k}: {v}" for k, v in vals.items()]
return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=len(vals_pairs) > 0)
paste_fields = paste_fields + [(override_settings_component, paste_settings)]
button.click( button.click(
fn=paste_func, fn=paste_func,
_js=jsfunc,
inputs=[input_comp], inputs=[input_comp],
outputs=[x[0] for x in paste_fields], outputs=[x[0] for x in paste_fields],
) )
button.click(
fn=None,
_js=f"recalculate_prompts_{tabname}",
inputs=[],
outputs=[],
)

View File

@ -6,11 +6,12 @@ import facexlib
import gfpgan import gfpgan
import modules.face_restoration import modules.face_restoration
from modules import paths, shared, devices, modelloader from modules import shared, devices, modelloader
from modules.paths import models_path
model_dir = "GFPGAN" model_dir = "GFPGAN"
user_path = None user_path = None
model_path = os.path.join(paths.models_path, model_dir) model_path = os.path.join(models_path, model_dir)
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
have_gfpgan = False have_gfpgan = False
loaded_gfpgan_model = None loaded_gfpgan_model = None

View File

@ -4,11 +4,8 @@ import os.path
import filelock import filelock
from modules import shared
from modules.paths import data_path
cache_filename = "cache.json"
cache_filename = os.path.join(data_path, "cache.json")
cache_data = None cache_data = None
@ -69,9 +66,6 @@ def sha256(filename, title):
if sha256_value is not None: if sha256_value is not None:
return sha256_value return sha256_value
if shared.cmd_opts.no_hashing:
return None
print(f"Calculating sha256 for {filename}: ", end='') print(f"Calculating sha256 for {filename}: ", end='')
sha256_value = calculate_sha256(filename) sha256_value = calculate_sha256(filename)
print(f"{sha256_value}") print(f"{sha256_value}")

View File

@ -307,12 +307,12 @@ class Hypernetwork:
def shorthash(self): def shorthash(self):
sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}') sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')
return sha256[0:10] if sha256 else None return sha256[0:10]
def list_hypernetworks(path): def list_hypernetworks(path):
res = {} res = {}
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower): for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
name = os.path.splitext(os.path.basename(filename))[0] name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed. # Prevent a hypothetical "None.pt" from being listed.
if name != "None": if name != "None":
@ -380,8 +380,8 @@ def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
layer.hyper_k = hypernetwork_layers[0] layer.hyper_k = hypernetwork_layers[0]
layer.hyper_v = hypernetwork_layers[1] layer.hyper_v = hypernetwork_layers[1]
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k))) context_k = hypernetwork_layers[0](context_k)
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v))) context_v = hypernetwork_layers[1](context_v)
return context_k, context_v return context_k, context_v
@ -496,7 +496,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
shared.reload_hypernetworks() shared.reload_hypernetworks()
def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem. # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images from modules import images
@ -554,7 +554,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
pin_memory = shared.opts.pin_memory pin_memory = shared.opts.pin_memory
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight) ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
if shared.opts.save_training_settings_to_txt: if shared.opts.save_training_settings_to_txt:
saved_params = dict( saved_params = dict(
@ -640,19 +640,13 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
with devices.autocast(): with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if use_weight:
w = batch.weight.to(devices.device, non_blocking=pin_memory)
if tag_drop_out != 0 or shuffle_tags: if tag_drop_out != 0 or shuffle_tags:
shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.cond_stage_model.to(devices.device)
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory) c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
shared.sd_model.cond_stage_model.to(devices.cpu) shared.sd_model.cond_stage_model.to(devices.cpu)
else: else:
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory) c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
if use_weight: loss = shared.sd_model(x, c)[0] / gradient_step
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
del w
else:
loss = shared.sd_model.forward(x, c)[0] / gradient_step
del x del x
del c del c

View File

@ -16,9 +16,8 @@ from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
from fonts.ttf import Roboto from fonts.ttf import Roboto
import string import string
import json import json
import hashlib
from modules import sd_samplers, shared, script_callbacks, errors from modules import sd_samplers, shared, script_callbacks
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
@ -37,8 +36,6 @@ def image_grid(imgs, batch_size=1, rows=None):
else: else:
rows = math.sqrt(len(imgs)) rows = math.sqrt(len(imgs))
rows = round(rows) rows = round(rows)
if rows > len(imgs):
rows = len(imgs)
cols = math.ceil(len(imgs) / rows) cols = math.ceil(len(imgs) / rows)
@ -131,7 +128,7 @@ class GridAnnotation:
self.size = None self.size = None
def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
def wrap(drawing, text, font, line_length): def wrap(drawing, text, font, line_length):
lines = [''] lines = ['']
for word in text.split(): for word in text.split():
@ -195,35 +192,32 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
line.allowed_width = allowed_width line.allowed_width = allowed_width
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts] hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts] ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
ver_texts]
pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2 pad_top = max(hor_text_heights) + line_spacing * 2
result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), "white") result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white")
result.paste(im, (pad_left, pad_top))
for row in range(rows):
for col in range(cols):
cell = im.crop((width * col, height * row, width * (col+1), height * (row+1)))
result.paste(cell, (pad_left + (width + margin) * col, pad_top + (height + margin) * row))
d = ImageDraw.Draw(result) d = ImageDraw.Draw(result)
for col in range(cols): for col in range(cols):
x = pad_left + (width + margin) * col + width / 2 x = pad_left + width * col + width / 2
y = pad_top / 2 - hor_text_heights[col] / 2 y = pad_top / 2 - hor_text_heights[col] / 2
draw_texts(d, x, y, hor_texts[col], fnt, fontsize) draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
for row in range(rows): for row in range(rows):
x = pad_left / 2 x = pad_left / 2
y = pad_top + (height + margin) * row + height / 2 - ver_text_heights[row] / 2 y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
draw_texts(d, x, y, ver_texts[row], fnt, fontsize) draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
return result return result
def draw_prompt_matrix(im, width, height, all_prompts, margin=0): def draw_prompt_matrix(im, width, height, all_prompts):
prompts = all_prompts[1:] prompts = all_prompts[1:]
boundary = math.ceil(len(prompts) / 2) boundary = math.ceil(len(prompts) / 2)
@ -233,7 +227,7 @@ def draw_prompt_matrix(im, width, height, all_prompts, margin=0):
hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))] hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))]
ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))] ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))]
return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin) return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
def resize_image(resize_mode, im, width, height, upscaler_name=None): def resize_image(resize_mode, im, width, height, upscaler_name=None):
@ -261,12 +255,9 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
if scale > 1.0: if scale > 1.0:
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name] upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
if len(upscalers) == 0: assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}"
upscaler = shared.sd_upscalers[0]
print(f"could not find upscaler named {upscaler_name or '<empty string>'}, using {upscaler.name} as a fallback")
else:
upscaler = upscalers[0]
upscaler = upscalers[0]
im = upscaler.scaler.upscale(im, scale, upscaler.data_path) im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
if im.width != w or im.height != h: if im.width != w or im.height != h:
@ -347,7 +338,6 @@ class FilenameGenerator:
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'), 'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>] 'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp), 'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
'prompt_hash': lambda self: hashlib.sha256(self.prompt.encode()).hexdigest()[0:8],
'prompt': lambda self: sanitize_filename_part(self.prompt), 'prompt': lambda self: sanitize_filename_part(self.prompt),
'prompt_no_styles': lambda self: self.prompt_no_style(), 'prompt_no_styles': lambda self: self.prompt_no_style(),
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False), 'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
@ -556,10 +546,8 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
elif extension.lower() in (".jpg", ".jpeg", ".webp"): elif extension.lower() in (".jpg", ".jpeg", ".webp"):
if image_to_save.mode == 'RGBA': if image_to_save.mode == 'RGBA':
image_to_save = image_to_save.convert("RGB") image_to_save = image_to_save.convert("RGB")
elif image_to_save.mode == 'I;16':
image_to_save = image_to_save.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L")
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, lossless=opts.webp_lossless) image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
if opts.enable_pnginfo and info is not None: if opts.enable_pnginfo and info is not None:
exif_bytes = piexif.dump({ exif_bytes = piexif.dump({
@ -576,28 +564,21 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
os.replace(temp_file_path, filename_without_extension + extension) os.replace(temp_file_path, filename_without_extension + extension)
fullfn_without_extension, extension = os.path.splitext(params.filename) fullfn_without_extension, extension = os.path.splitext(params.filename)
if hasattr(os, 'statvfs'):
max_name_len = os.statvfs(path).f_namemax
fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))]
params.filename = fullfn_without_extension + extension
fullfn = params.filename
_atomically_save_image(image, fullfn_without_extension, extension) _atomically_save_image(image, fullfn_without_extension, extension)
image.already_saved_as = fullfn image.already_saved_as = fullfn
oversize = image.width > opts.target_side_length or image.height > opts.target_side_length target_side_length = 4000
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024): oversize = image.width > target_side_length or image.height > target_side_length
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > 4 * 1024 * 1024):
ratio = image.width / image.height ratio = image.width / image.height
if oversize and ratio > 1: if oversize and ratio > 1:
image = image.resize((round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)), LANCZOS) image = image.resize((target_side_length, image.height * target_side_length // image.width), LANCZOS)
elif oversize: elif oversize:
image = image.resize((round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)), LANCZOS) image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
try:
_atomically_save_image(image, fullfn_without_extension, ".jpg") _atomically_save_image(image, fullfn_without_extension, ".jpg")
except Exception as e:
errors.display(e, "saving image as downscaled JPG")
if opts.save_txt and info is not None: if opts.save_txt and info is not None:
txt_fullfn = f"{fullfn_without_extension}.txt" txt_fullfn = f"{fullfn_without_extension}.txt"
@ -648,8 +629,6 @@ Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}
def image_data(data): def image_data(data):
import gradio as gr
try: try:
image = Image.open(io.BytesIO(data)) image = Image.open(io.BytesIO(data))
textinfo, _ = read_info_from_image(image) textinfo, _ = read_info_from_image(image)
@ -665,7 +644,7 @@ def image_data(data):
except Exception: except Exception:
pass pass
return gr.update(), None return '', None
def flatten(img, bgcolor): def flatten(img, bgcolor):

View File

@ -7,7 +7,6 @@ import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
from modules import devices, sd_samplers from modules import devices, sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state from modules.shared import opts, state
import modules.shared as shared import modules.shared as shared
@ -17,18 +16,11 @@ import modules.images as images
import modules.scripts import modules.scripts
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): def process_batch(p, input_dir, output_dir, args):
processing.fix_seed(p) processing.fix_seed(p)
images = shared.listfiles(input_dir) images = shared.listfiles(input_dir)
is_inpaint_batch = False
if inpaint_mask_dir:
inpaint_masks = shared.listfiles(inpaint_mask_dir)
is_inpaint_batch = len(inpaint_masks) > 0
if is_inpaint_batch:
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.") print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
save_normally = output_dir == '' save_normally = output_dir == ''
@ -51,15 +43,6 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
img = ImageOps.exif_transpose(img) img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size p.init_images = [img] * p.batch_size
if is_inpaint_batch:
# try to find corresponding mask for an image using simple filename matching
mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image))
# if not found use first one ("same mask for all images" use-case)
if not mask_image_path in inpaint_masks:
mask_image_path = inpaint_masks[0]
mask_image = Image.open(mask_image_path)
p.image_mask = mask_image
proc = modules.scripts.scripts_img2img.run(p, *args) proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None: if proc is None:
proc = process_images(p) proc = process_images(p)
@ -73,14 +56,10 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
if not save_normally: if not save_normally:
os.makedirs(output_dir, exist_ok=True) os.makedirs(output_dir, exist_ok=True)
if processed_image.mode == 'RGBA':
processed_image = processed_image.convert("RGB")
processed_image.save(os.path.join(output_dir, filename)) processed_image.save(os.path.join(output_dir, filename))
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5 is_batch = mode == 5
if mode == 0: # img2img if mode == 0: # img2img
@ -144,11 +123,9 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
inpainting_fill=inpainting_fill, inpainting_fill=inpainting_fill,
resize_mode=resize_mode, resize_mode=resize_mode,
denoising_strength=denoising_strength, denoising_strength=denoising_strength,
image_cfg_scale=image_cfg_scale,
inpaint_full_res=inpaint_full_res, inpaint_full_res=inpaint_full_res,
inpaint_full_res_padding=inpaint_full_res_padding, inpaint_full_res_padding=inpaint_full_res_padding,
inpainting_mask_invert=inpainting_mask_invert, inpainting_mask_invert=inpainting_mask_invert,
override_settings=override_settings,
) )
p.scripts = modules.scripts.scripts_txt2img p.scripts = modules.scripts.scripts_txt2img
@ -157,13 +134,12 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if shared.cmd_opts.enable_console_prompts: if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out) print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
if mask:
p.extra_generation_params["Mask blur"] = mask_blur p.extra_generation_params["Mask blur"] = mask_blur
if is_batch: if is_batch:
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled" assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args) process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, args)
processed = Processed(p, [], p.seed, "") processed = Processed(p, [], p.seed, "")
else: else:

View File

@ -12,7 +12,7 @@ from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared import modules.shared as shared
from modules import devices, paths, shared, lowvram, modelloader, errors from modules import devices, paths, lowvram, modelloader, errors
blip_image_eval_size = 384 blip_image_eval_size = 384
clip_model_name = 'ViT-L/14' clip_model_name = 'ViT-L/14'

View File

@ -55,12 +55,12 @@ def setup_for_low_vram(sd_model, use_medvram):
if hasattr(sd_model.cond_stage_model, 'model'): if hasattr(sd_model.cond_stage_model, 'model'):
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
# remove several big modules: cond, first_stage, depth/embedder (if applicable), and unet from the model and then # remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
# send the model to GPU. Then put modules back. the modules will be in CPU. # send the model to GPU. Then put modules back. the modules will be in CPU.
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), getattr(sd_model, 'embedder', None), sd_model.model stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = None, None, None, None, None sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
sd_model.to(devices.device) sd_model.to(devices.device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = stored sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
# register hooks for those the first three models # register hooks for those the first three models
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu) sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
@ -69,8 +69,6 @@ def setup_for_low_vram(sd_model, use_medvram):
sd_model.first_stage_model.decode = first_stage_model_decode_wrap sd_model.first_stage_model.decode = first_stage_model_decode_wrap
if sd_model.depth_model: if sd_model.depth_model:
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu) sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
if sd_model.embedder:
sd_model.embedder.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
if hasattr(sd_model.cond_stage_model, 'model'): if hasattr(sd_model.cond_stage_model, 'model'):

View File

@ -1,59 +0,0 @@
import torch
import platform
from modules import paths
from modules.sd_hijack_utils import CondFunc
from packaging import version
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility
def check_for_mps() -> bool:
if not getattr(torch, 'has_mps', False):
return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
has_mps = check_for_mps()
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
def cumsum_fix(input, cumsum_func, *args, **kwargs):
if input.device.type == 'mps':
output_dtype = kwargs.get('dtype', input.dtype)
if output_dtype == torch.int64:
return cumsum_func(input.cpu(), *args, **kwargs).to(input.device)
elif output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16):
return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64)
return cumsum_func(input, *args, **kwargs)
if has_mps:
# MPS fix for randn in torchsde
CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'mps')
if platform.mac_ver()[0].startswith("13.2."):
# MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124)
CondFunc('torch.nn.functional.linear', lambda _, input, weight, bias: (torch.matmul(input, weight.t()) + bias) if bias is not None else torch.matmul(input, weight.t()), lambda _, input, weight, bias: input.numel() > 10485760)
if version.parse(torch.__version__) < version.parse("1.13"):
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs),
lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps'))
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs),
lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps')
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad)
elif version.parse(torch.__version__) > version.parse("1.13.1"):
cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0))
cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs)
CondFunc('torch.cumsum', cumsum_fix_func, None)
CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None)
CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None)
if version.parse(torch.__version__) == version.parse("2.0"):
# MPS workaround for https://github.com/pytorch/pytorch/issues/96113
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda *args, **kwargs: len(args) == 6)

View File

@ -23,16 +23,12 @@ class MemUsageMonitor(threading.Thread):
self.data = defaultdict(int) self.data = defaultdict(int)
try: try:
self.cuda_mem_get_info() torch.cuda.mem_get_info()
torch.cuda.memory_stats(self.device) torch.cuda.memory_stats(self.device)
except Exception as e: # AMD or whatever except Exception as e: # AMD or whatever
print(f"Warning: caught exception '{e}', memory monitor disabled") print(f"Warning: caught exception '{e}', memory monitor disabled")
self.disabled = True self.disabled = True
def cuda_mem_get_info(self):
index = self.device.index if self.device.index is not None else torch.cuda.current_device()
return torch.cuda.mem_get_info(index)
def run(self): def run(self):
if self.disabled: if self.disabled:
return return
@ -47,10 +43,10 @@ class MemUsageMonitor(threading.Thread):
self.run_flag.clear() self.run_flag.clear()
continue continue
self.data["min_free"] = self.cuda_mem_get_info()[0] self.data["min_free"] = torch.cuda.mem_get_info()[0]
while self.run_flag.is_set(): while self.run_flag.is_set():
free, total = self.cuda_mem_get_info() free, total = torch.cuda.mem_get_info() # calling with self.device errors, torch bug?
self.data["min_free"] = min(self.data["min_free"], free) self.data["min_free"] = min(self.data["min_free"], free)
time.sleep(1 / self.opts.memmon_poll_rate) time.sleep(1 / self.opts.memmon_poll_rate)
@ -74,7 +70,7 @@ class MemUsageMonitor(threading.Thread):
def read(self): def read(self):
if not self.disabled: if not self.disabled:
free, total = self.cuda_mem_get_info() free, total = torch.cuda.mem_get_info()
self.data["free"] = free self.data["free"] = free
self.data["total"] = total self.data["total"] = total

View File

@ -4,8 +4,9 @@ import shutil
import importlib import importlib
from urllib.parse import urlparse from urllib.parse import urlparse
from basicsr.utils.download_util import load_file_from_url
from modules import shared from modules import shared
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone from modules.upscaler import Upscaler
from modules.paths import script_path, models_path from modules.paths import script_path, models_path
@ -44,9 +45,6 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
full_path = file full_path = file
if os.path.isdir(full_path): if os.path.isdir(full_path):
continue continue
if os.path.islink(full_path) and not os.path.exists(full_path):
print(f"Skipping broken symlink: {full_path}")
continue
if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]): if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]):
continue continue
if len(ext_filter) != 0: if len(ext_filter) != 0:
@ -58,7 +56,6 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
if model_url is not None and len(output) == 0: if model_url is not None and len(output) == 0:
if download_name is not None: if download_name is not None:
from basicsr.utils.download_util import load_file_from_url
dl = load_file_from_url(model_url, model_path, True, download_name) dl = load_file_from_url(model_url, model_path, True, download_name)
output.append(dl) output.append(dl)
else: else:
@ -169,8 +166,4 @@ def load_upscalers():
scaler = cls(commandline_options.get(cmd_name, None)) scaler = cls(commandline_options.get(cmd_name, None))
datas += scaler.scalers datas += scaler.scalers
shared.sd_upscalers = sorted( shared.sd_upscalers = datas
datas,
# Special case for UpscalerNone keeps it at the beginning of the list.
key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
)

File diff suppressed because it is too large Load Diff

View File

@ -1 +0,0 @@
from .sampler import UniPCSampler

View File

@ -1,100 +0,0 @@
"""SAMPLING ONLY."""
import torch
from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
from modules import shared, devices
class UniPCSampler(object):
def __init__(self, model, **kwargs):
super().__init__()
self.model = model
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
self.before_sample = None
self.after_sample = None
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != devices.device:
attr = attr.to(devices.device)
setattr(self, name, attr)
def set_hooks(self, before_sample, after_sample, after_update):
self.before_sample = before_sample
self.after_sample = after_sample
self.after_update = after_update
@torch.no_grad()
def sample(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list): ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
elif isinstance(conditioning, list):
for ctmp in conditioning:
if ctmp.shape[0] != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
else:
if conditioning.shape[0] != batch_size:
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
# print(f'Data shape for UniPC sampling is {size}')
device = self.model.betas.device
if x_T is None:
img = torch.randn(size, device=device)
else:
img = x_T
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
# SD 1.X is "noise", SD 2.X is "v"
model_type = "v" if self.model.parameterization == "v" else "noise"
model_fn = model_wrapper(
lambda x, t, c: self.model.apply_model(x, t, c),
ns,
model_type=model_type,
guidance_type="classifier-free",
#condition=conditioning,
#unconditional_condition=unconditional_conditioning,
guidance_scale=unconditional_guidance_scale,
)
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update)
x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
return x.to(device), None

View File

@ -1,857 +0,0 @@
import torch
import torch.nn.functional as F
import math
from tqdm.auto import trange
class NoiseScheduleVP:
def __init__(
self,
schedule='discrete',
betas=None,
alphas_cumprod=None,
continuous_beta_0=0.1,
continuous_beta_1=20.,
):
"""Create a wrapper class for the forward SDE (VP type).
***
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
***
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
log_alpha_t = self.marginal_log_mean_coeff(t)
sigma_t = self.marginal_std(t)
lambda_t = self.marginal_lambda(t)
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
t = self.inverse_lambda(lambda_t)
===============================================================
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
1. For discrete-time DPMs:
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
t_i = (i + 1) / N
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
Args:
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
**Important**: Please pay special attention for the args for `alphas_cumprod`:
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
alpha_{t_n} = \sqrt{\hat{alpha_n}},
and
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
2. For continuous-time DPMs:
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
schedule are the default settings in DDPM and improved-DDPM:
Args:
beta_min: A `float` number. The smallest beta for the linear schedule.
beta_max: A `float` number. The largest beta for the linear schedule.
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
T: A `float` number. The ending time of the forward process.
===============================================================
Args:
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
'linear' or 'cosine' for continuous-time DPMs.
Returns:
A wrapper object of the forward SDE (VP type).
===============================================================
Example:
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', betas=betas)
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
# For continuous-time DPMs (VPSDE), linear schedule:
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
"""
if schedule not in ['discrete', 'linear', 'cosine']:
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
self.schedule = schedule
if schedule == 'discrete':
if betas is not None:
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
else:
assert alphas_cumprod is not None
log_alphas = 0.5 * torch.log(alphas_cumprod)
self.total_N = len(log_alphas)
self.T = 1.
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
self.log_alpha_array = log_alphas.reshape((1, -1,))
else:
self.total_N = 1000
self.beta_0 = continuous_beta_0
self.beta_1 = continuous_beta_1
self.cosine_s = 0.008
self.cosine_beta_max = 999.
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
self.schedule = schedule
if schedule == 'cosine':
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
self.T = 0.9946
else:
self.T = 1.
def marginal_log_mean_coeff(self, t):
"""
Compute log(alpha_t) of a given continuous-time label t in [0, T].
"""
if self.schedule == 'discrete':
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
elif self.schedule == 'linear':
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
elif self.schedule == 'cosine':
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
return log_alpha_t
def marginal_alpha(self, t):
"""
Compute alpha_t of a given continuous-time label t in [0, T].
"""
return torch.exp(self.marginal_log_mean_coeff(t))
def marginal_std(self, t):
"""
Compute sigma_t of a given continuous-time label t in [0, T].
"""
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
return log_mean_coeff - log_std
def inverse_lambda(self, lamb):
"""
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
"""
if self.schedule == 'linear':
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
Delta = self.beta_0**2 + tmp
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
elif self.schedule == 'discrete':
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
return t.reshape((-1,))
else:
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
t = t_fn(log_alpha)
return t
def model_wrapper(
model,
noise_schedule,
model_type="noise",
model_kwargs={},
guidance_type="uncond",
#condition=None,
#unconditional_condition=None,
guidance_scale=1.,
classifier_fn=None,
classifier_kwargs={},
):
"""Create a wrapper function for the noise prediction model.
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
We support four types of the diffusion model by setting `model_type`:
1. "noise": noise prediction model. (Trained by predicting noise).
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
3. "v": velocity prediction model. (Trained by predicting the velocity).
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
arXiv preprint arXiv:2202.00512 (2022).
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
arXiv preprint arXiv:2210.02303 (2022).
4. "score": marginal score function. (Trained by denoising score matching).
Note that the score function and the noise prediction model follows a simple relationship:
```
noise(x_t, t) = -sigma_t * score(x_t, t)
```
We support three types of guided sampling by DPMs by setting `guidance_type`:
1. "uncond": unconditional sampling by DPMs.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
The input `classifier_fn` has the following format:
``
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
``
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
The input `model` has the following format:
``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
arXiv preprint arXiv:2207.12598 (2022).
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
or continuous-time labels (i.e. epsilon to T).
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
===============================================================
Args:
model: A diffusion model with the corresponding format described above.
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
model_type: A `str`. The parameterization type of the diffusion model.
"noise" or "x_start" or "v" or "score".
model_kwargs: A `dict`. A dict for the other inputs of the model function.
guidance_type: A `str`. The type of the guidance for sampling.
"uncond" or "classifier" or "classifier-free".
condition: A pytorch tensor. The condition for the guided sampling.
Only used for "classifier" or "classifier-free" guidance type.
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
Only used for "classifier-free" guidance type.
guidance_scale: A `float`. The scale for the guided sampling.
classifier_fn: A classifier function. Only used for the classifier guidance.
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
Returns:
A noise prediction model that accepts the noised data and the continuous time as the inputs.
"""
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
For continuous-time DPMs, we just use `t_continuous`.
"""
if noise_schedule.schedule == 'discrete':
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
else:
return t_continuous
def noise_pred_fn(x, t_continuous, cond=None):
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
t_input = get_model_input_time(t_continuous)
if cond is None:
output = model(x, t_input, None, **model_kwargs)
else:
output = model(x, t_input, cond, **model_kwargs)
if model_type == "noise":
return output
elif model_type == "x_start":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
elif model_type == "v":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
elif model_type == "score":
sigma_t = noise_schedule.marginal_std(t_continuous)
dims = x.dim()
return -expand_dims(sigma_t, dims) * output
def cond_grad_fn(x, t_input, condition):
"""
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
"""
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
return torch.autograd.grad(log_prob.sum(), x_in)[0]
def model_fn(x, t_continuous, condition, unconditional_condition):
"""
The noise predicition model function that is used for DPM-Solver.
"""
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
if guidance_type == "uncond":
return noise_pred_fn(x, t_continuous)
elif guidance_type == "classifier":
assert classifier_fn is not None
t_input = get_model_input_time(t_continuous)
cond_grad = cond_grad_fn(x, t_input, condition)
sigma_t = noise_schedule.marginal_std(t_continuous)
noise = noise_pred_fn(x, t_continuous)
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
elif guidance_type == "classifier-free":
if guidance_scale == 1. or unconditional_condition is None:
return noise_pred_fn(x, t_continuous, cond=condition)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t_continuous] * 2)
if isinstance(condition, dict):
assert isinstance(unconditional_condition, dict)
c_in = dict()
for k in condition:
if isinstance(condition[k], list):
c_in[k] = [torch.cat([
unconditional_condition[k][i],
condition[k][i]]) for i in range(len(condition[k]))]
else:
c_in[k] = torch.cat([
unconditional_condition[k],
condition[k]])
elif isinstance(condition, list):
c_in = list()
assert isinstance(unconditional_condition, list)
for i in range(len(condition)):
c_in.append(torch.cat([unconditional_condition[i], condition[i]]))
else:
c_in = torch.cat([unconditional_condition, condition])
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
return noise_uncond + guidance_scale * (noise - noise_uncond)
assert model_type in ["noise", "x_start", "v"]
assert guidance_type in ["uncond", "classifier", "classifier-free"]
return model_fn
class UniPC:
def __init__(
self,
model_fn,
noise_schedule,
predict_x0=True,
thresholding=False,
max_val=1.,
variant='bh1',
condition=None,
unconditional_condition=None,
before_sample=None,
after_sample=None,
after_update=None
):
"""Construct a UniPC.
We support both data_prediction and noise_prediction.
"""
self.model_fn_ = model_fn
self.noise_schedule = noise_schedule
self.variant = variant
self.predict_x0 = predict_x0
self.thresholding = thresholding
self.max_val = max_val
self.condition = condition
self.unconditional_condition = unconditional_condition
self.before_sample = before_sample
self.after_sample = after_sample
self.after_update = after_update
def dynamic_thresholding_fn(self, x0, t=None):
"""
The dynamic thresholding method.
"""
dims = x0.dim()
p = self.dynamic_thresholding_ratio
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
x0 = torch.clamp(x0, -s, s) / s
return x0
def model(self, x, t):
cond = self.condition
uncond = self.unconditional_condition
if self.before_sample is not None:
x, t, cond, uncond = self.before_sample(x, t, cond, uncond)
res = self.model_fn_(x, t, cond, uncond)
if self.after_sample is not None:
x, t, cond, uncond, res = self.after_sample(x, t, cond, uncond, res)
if isinstance(res, tuple):
# (None, pred_x0)
res = res[1]
return res
def noise_prediction_fn(self, x, t):
"""
Return the noise prediction model.
"""
return self.model(x, t)
def data_prediction_fn(self, x, t):
"""
Return the data prediction model (with thresholding).
"""
noise = self.noise_prediction_fn(x, t)
dims = x.dim()
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
if self.thresholding:
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
x0 = torch.clamp(x0, -s, s) / s
return x0
def model_fn(self, x, t):
"""
Convert the model to the noise prediction model or the data prediction model.
"""
if self.predict_x0:
return self.data_prediction_fn(x, t)
else:
return self.noise_prediction_fn(x, t)
def get_time_steps(self, skip_type, t_T, t_0, N, device):
"""Compute the intermediate time steps for sampling.
"""
if skip_type == 'logSNR':
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
return self.noise_schedule.inverse_lambda(logSNR_steps)
elif skip_type == 'time_uniform':
return torch.linspace(t_T, t_0, N + 1).to(device)
elif skip_type == 'time_quadratic':
t_order = 2
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
return t
else:
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
"""
Get the order of each step for sampling by the singlestep DPM-Solver.
"""
if order == 3:
K = steps // 3 + 1
if steps % 3 == 0:
orders = [3,] * (K - 2) + [2, 1]
elif steps % 3 == 1:
orders = [3,] * (K - 1) + [1]
else:
orders = [3,] * (K - 1) + [2]
elif order == 2:
if steps % 2 == 0:
K = steps // 2
orders = [2,] * K
else:
K = steps // 2 + 1
orders = [2,] * (K - 1) + [1]
elif order == 1:
K = steps
orders = [1,] * steps
else:
raise ValueError("'order' must be '1' or '2' or '3'.")
if skip_type == 'logSNR':
# To reproduce the results in DPM-Solver paper
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
else:
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
return timesteps_outer, orders
def denoise_to_zero_fn(self, x, s):
"""
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
"""
return self.data_prediction_fn(x, s)
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
if len(t.shape) == 0:
t = t.view(-1)
if 'bh' in self.variant:
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
else:
assert self.variant == 'vary_coeff'
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
#print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
ns = self.noise_schedule
assert order <= len(model_prev_list)
# first compute rks
t_prev_0 = t_prev_list[-1]
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
lambda_t = ns.marginal_lambda(t)
model_prev_0 = model_prev_list[-1]
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
log_alpha_t = ns.marginal_log_mean_coeff(t)
alpha_t = torch.exp(log_alpha_t)
h = lambda_t - lambda_prev_0
rks = []
D1s = []
for i in range(1, order):
t_prev_i = t_prev_list[-(i + 1)]
model_prev_i = model_prev_list[-(i + 1)]
lambda_prev_i = ns.marginal_lambda(t_prev_i)
rk = (lambda_prev_i - lambda_prev_0) / h
rks.append(rk)
D1s.append((model_prev_i - model_prev_0) / rk)
rks.append(1.)
rks = torch.tensor(rks, device=x.device)
K = len(rks)
# build C matrix
C = []
col = torch.ones_like(rks)
for k in range(1, K + 1):
C.append(col)
col = col * rks / (k + 1)
C = torch.stack(C, dim=1)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
C_inv_p = torch.linalg.inv(C[:-1, :-1])
A_p = C_inv_p
if use_corrector:
#print('using corrector')
C_inv = torch.linalg.inv(C)
A_c = C_inv
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh)
h_phi_ks = []
factorial_k = 1
h_phi_k = h_phi_1
for k in range(1, K + 2):
h_phi_ks.append(h_phi_k)
h_phi_k = h_phi_k / hh - 1 / factorial_k
factorial_k *= (k + 1)
model_t = None
if self.predict_x0:
x_t_ = (
sigma_t / sigma_prev_0 * x
- alpha_t * h_phi_1 * model_prev_0
)
# now predictor
x_t = x_t_
if len(D1s) > 0:
# compute the residuals for predictor
for k in range(K - 1):
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
# now corrector
if use_corrector:
model_t = self.model_fn(x_t, t)
D1_t = (model_t - model_prev_0)
x_t = x_t_
k = 0
for k in range(K - 1):
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
else:
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
x_t_ = (
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
- (sigma_t * h_phi_1) * model_prev_0
)
# now predictor
x_t = x_t_
if len(D1s) > 0:
# compute the residuals for predictor
for k in range(K - 1):
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
# now corrector
if use_corrector:
model_t = self.model_fn(x_t, t)
D1_t = (model_t - model_prev_0)
x_t = x_t_
k = 0
for k in range(K - 1):
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
return x_t, model_t
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
#print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
ns = self.noise_schedule
assert order <= len(model_prev_list)
dims = x.dim()
# first compute rks
t_prev_0 = t_prev_list[-1]
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
lambda_t = ns.marginal_lambda(t)
model_prev_0 = model_prev_list[-1]
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
alpha_t = torch.exp(log_alpha_t)
h = lambda_t - lambda_prev_0
rks = []
D1s = []
for i in range(1, order):
t_prev_i = t_prev_list[-(i + 1)]
model_prev_i = model_prev_list[-(i + 1)]
lambda_prev_i = ns.marginal_lambda(t_prev_i)
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
rks.append(rk)
D1s.append((model_prev_i - model_prev_0) / rk)
rks.append(1.)
rks = torch.tensor(rks, device=x.device)
R = []
b = []
hh = -h[0] if self.predict_x0 else h[0]
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.variant == 'bh1':
B_h = hh
elif self.variant == 'bh2':
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= (i + 1)
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=x.device)
# now predictor
use_predictor = len(D1s) > 0 and x_t is None
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
if x_t is None:
# for order 2, we use a simplified version
if order == 2:
rhos_p = torch.tensor([0.5], device=b.device)
else:
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
else:
D1s = None
if use_corrector:
#print('using corrector')
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], device=b.device)
else:
rhos_c = torch.linalg.solve(R, b)
model_t = None
if self.predict_x0:
x_t_ = (
expand_dims(sigma_t / sigma_prev_0, dims) * x
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
)
if x_t is None:
if use_predictor:
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
if use_corrector:
model_t = self.model_fn(x_t, t)
if D1s is not None:
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = (model_t - model_prev_0)
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
else:
x_t_ = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
)
if x_t is None:
if use_predictor:
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
if use_corrector:
model_t = self.model_fn(x_t, t)
if D1s is not None:
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = (model_t - model_prev_0)
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
return x_t, model_t
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
atol=0.0078, rtol=0.05, corrector=False,
):
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
t_T = self.noise_schedule.T if t_start is None else t_start
device = x.device
if method == 'multistep':
assert steps >= order, "UniPC order must be < sampling steps"
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
#print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
assert timesteps.shape[0] - 1 == steps
with torch.no_grad():
vec_t = timesteps[0].expand((x.shape[0]))
model_prev_list = [self.model_fn(x, vec_t)]
t_prev_list = [vec_t]
# Init the first `order` values by lower order multistep DPM-Solver.
for init_order in range(1, order):
vec_t = timesteps[init_order].expand(x.shape[0])
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
if model_x is None:
model_x = self.model_fn(x, vec_t)
if self.after_update is not None:
self.after_update(x, model_x)
model_prev_list.append(model_x)
t_prev_list.append(vec_t)
for step in trange(order, steps + 1):
vec_t = timesteps[step].expand(x.shape[0])
if lower_order_final:
step_order = min(order, steps + 1 - step)
else:
step_order = order
#print('this step order:', step_order)
if step == steps:
#print('do not run corrector at the last step')
use_corrector = False
else:
use_corrector = True
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
if self.after_update is not None:
self.after_update(x, model_x)
for i in range(order - 1):
t_prev_list[i] = t_prev_list[i + 1]
model_prev_list[i] = model_prev_list[i + 1]
t_prev_list[-1] = vec_t
# We do not need to evaluate the final model value.
if step < steps:
if model_x is None:
model_x = self.model_fn(x, vec_t)
model_prev_list[-1] = model_x
else:
raise NotImplementedError()
if denoise_to_zero:
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
return x
#############################################################
# other utility functions
#############################################################
def interpolate_fn(x, xp, yp):
"""
A piecewise linear function y = f(x), using xp and yp as keypoints.
We implement f(x) in a differentiable way (i.e. applicable for autograd).
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
Args:
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
yp: PyTorch tensor with shape [C, K].
Returns:
The function values f(x), with shape [N, C].
"""
N, K = x.shape[0], xp.shape[1]
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
x_idx = torch.argmin(x_indices, dim=2)
cand_start_idx = x_idx - 1
start_idx = torch.where(
torch.eq(x_idx, 0),
torch.tensor(1, device=x.device),
torch.where(
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
),
)
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
start_idx2 = torch.where(
torch.eq(x_idx, 0),
torch.tensor(0, device=x.device),
torch.where(
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
),
)
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
return cand
def expand_dims(v, dims):
"""
Expand the tensor `v` to the dim `dims`.
Args:
`v`: a PyTorch tensor with shape [N].
`dim`: a `int`.
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,)*(dims - 1)]

View File

@ -1,11 +1,10 @@
import argparse
import os import os
import sys import sys
from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir
import modules.safe import modules.safe
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
# data_path = cmd_opts_pre.data models_path = os.path.join(script_path, "models")
sys.path.insert(0, script_path) sys.path.insert(0, script_path)
# search for directory of stable diffusion in following places # search for directory of stable diffusion in following places

View File

@ -1,22 +0,0 @@
"""this module defines internal paths used by program and is safe to import before dependencies are installed in launch.py"""
import argparse
import os
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sd_configs_path = os.path.join(script_path, "configs")
sd_default_config = os.path.join(sd_configs_path, "v1-inference.yaml")
sd_model_file = os.path.join(script_path, 'model.ckpt')
default_sd_model_file = sd_model_file
# Parse the --data-dir flag first so we can use it as a base for our other argument default values
parser_pre = argparse.ArgumentParser(add_help=False)
parser_pre.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",)
cmd_opts_pre = parser_pre.parse_known_args()[0]
data_path = cmd_opts_pre.data_dir
models_path = os.path.join(data_path, "models")
extensions_dir = os.path.join(data_path, "extensions")
extensions_builtin_dir = os.path.join(script_path, "extensions-builtin")

View File

@ -13,11 +13,10 @@ from skimage import exposure
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
import modules.sd_hijack import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks
from modules.sd_hijack import model_hijack from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
import modules.paths as paths
import modules.face_restoration import modules.face_restoration
import modules.images as images import modules.images as images
import modules.styles import modules.styles
@ -78,7 +77,11 @@ def apply_overlay(image, paste_loc, index, overlays):
def txt2img_image_conditioning(sd_model, x, width, height): def txt2img_image_conditioning(sd_model, x, width, height):
if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models if sd_model.model.conditioning_key not in {'hybrid', 'concat'}:
# Dummy zero conditioning if we're not using inpainting model.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
# The "masked-image" in this case will just be all zeros since the entire image is masked. # The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device) image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
@ -90,16 +93,6 @@ def txt2img_image_conditioning(sd_model, x, width, height):
return image_conditioning return image_conditioning
elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
else:
# Dummy zero conditioning if we're not using inpainting or unclip models.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
class StableDiffusionProcessing: class StableDiffusionProcessing:
""" """
@ -191,19 +184,6 @@ class StableDiffusionProcessing:
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1. conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
return conditioning return conditioning
def edit_image_conditioning(self, source_image):
conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
return conditioning_image
def unclip_image_conditioning(self, source_image):
c_adm = self.sd_model.embedder(source_image)
if self.sd_model.noise_augmentor is not None:
noise_level = 0 # TODO: Allow other noise levels?
c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
c_adm = torch.cat((c_adm, noise_level_emb), 1)
return c_adm
def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None): def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None):
self.is_using_inpainting_conditioning = True self.is_using_inpainting_conditioning = True
@ -223,7 +203,7 @@ class StableDiffusionProcessing:
# Create another latent image, this time with a masked version of the original input. # Create another latent image, this time with a masked version of the original input.
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype) conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype)
conditioning_image = torch.lerp( conditioning_image = torch.lerp(
source_image, source_image,
source_image * (1.0 - conditioning_mask), source_image * (1.0 - conditioning_mask),
@ -242,22 +222,14 @@ class StableDiffusionProcessing:
return image_conditioning return image_conditioning
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None): def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
source_image = devices.cond_cast_float(source_image)
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
# identify itself with a field common to all models. The conditioning_key is also hybrid. # identify itself with a field common to all models. The conditioning_key is also hybrid.
if isinstance(self.sd_model, LatentDepth2ImageDiffusion): if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
return self.depth2img_image_conditioning(source_image) return self.depth2img_image_conditioning(source_image)
if self.sd_model.cond_stage_key == "edit":
return self.edit_image_conditioning(source_image)
if self.sampler.conditioning_key in {'hybrid', 'concat'}: if self.sampler.conditioning_key in {'hybrid', 'concat'}:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
if self.sampler.conditioning_key == "crossattn-adm":
return self.unclip_image_conditioning(source_image)
# Dummy zero conditioning if we're not using inpainting or depth model. # Dummy zero conditioning if we're not using inpainting or depth model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
@ -285,7 +257,6 @@ class Processed:
self.height = p.height self.height = p.height
self.sampler_name = p.sampler_name self.sampler_name = p.sampler_name
self.cfg_scale = p.cfg_scale self.cfg_scale = p.cfg_scale
self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.steps = p.steps self.steps = p.steps
self.batch_size = p.batch_size self.batch_size = p.batch_size
self.restore_faces = p.restore_faces self.restore_faces = p.restore_faces
@ -463,17 +434,19 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Steps": p.steps, "Steps": p.steps,
"Sampler": p.sampler_name, "Sampler": p.sampler_name,
"CFG scale": p.cfg_scale, "CFG scale": p.cfg_scale,
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
"Seed": all_seeds[index], "Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None), "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
"Size": f"{p.width}x{p.height}", "Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None), "Denoising strength": getattr(p, 'denoising_strength', None),
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip, "Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
} }
@ -560,6 +533,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings() model_hijack.embedding_db.load_textual_inversion_embeddings()
_, extra_network_data = extra_networks.parse_prompts(p.all_prompts[0:1])
if p.scripts is not None: if p.scripts is not None:
p.scripts.process(p) p.scripts.process(p)
@ -593,14 +568,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.autocast(): with devices.autocast():
p.init(p.all_prompts, p.all_seeds, p.all_subseeds) p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
# for OSX, loading the model during sampling changes the generated picture, so it is loaded here if not p.disable_extra_networks:
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN": extra_networks.activate(p, extra_network_data)
sd_vae_approx.model()
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
if state.job_count == -1: if state.job_count == -1:
state.job_count = p.n_iter state.job_count = p.n_iter
extra_network_data = None
for n in range(p.n_iter): for n in range(p.n_iter):
p.iteration = n p.iteration = n
@ -615,30 +592,14 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size] seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
if p.scripts is not None:
p.scripts.before_process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
if len(prompts) == 0: if len(prompts) == 0:
break break
prompts, extra_network_data = extra_networks.parse_prompts(prompts) prompts, _ = extra_networks.parse_prompts(prompts)
if not p.disable_extra_networks:
with devices.autocast():
extra_networks.activate(p, extra_network_data)
if p.scripts is not None: if p.scripts is not None:
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds) p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
# params.txt should be saved after scripts.process_batch, since the
# infotext could be modified by that callback
# Example: a wildcard processed by process_batch sets an extra model
# strength, which is saved as "Model Strength: 1.0" in the infotext
if n == 0:
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc) uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c) c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)
@ -649,7 +610,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.n_iter > 1: if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}" shared.state.job = f"Batch {n+1} out of {p.n_iter}"
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): with devices.autocast():
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))] x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
@ -684,11 +645,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image = Image.fromarray(x_sample) image = Image.fromarray(x_sample)
if p.scripts is not None:
pp = scripts.PostprocessImageArgs(image)
p.scripts.postprocess_image(p, pp)
image = pp.image
if p.color_corrections is not None and i < len(p.color_corrections): if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images) image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
@ -706,22 +662,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image.info["parameters"] = text image.info["parameters"] = text
output_images.append(image) output_images.append(image)
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
image_mask = p.mask_for_overlay.convert('RGB')
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), p.mask_for_overlay.convert('L')).convert('RGBA')
if opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
if opts.save_mask_composite:
images.save_image(image_mask_composite, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
if opts.return_mask:
output_images.append(image_mask)
if opts.return_mask_composite:
output_images.append(image_mask_composite)
del x_samples_ddim del x_samples_ddim
devices.torch_gc() devices.torch_gc()
@ -746,7 +686,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if opts.grid_save: if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
if not p.disable_extra_networks and extra_network_data: if not p.disable_extra_networks:
extra_networks.deactivate(p, extra_network_data) extra_networks.deactivate(p, extra_network_data)
devices.torch_gc() devices.torch_gc()
@ -925,9 +865,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob() shared.state.nextjob()
img2img_sampler_name = self.sampler_name img2img_sampler_name = self.sampler_name if self.sampler_name != 'PLMS' else 'DDIM' # PLMS does not support img2img so we just silently switch ot DDIM
if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
img2img_sampler_name = 'DDIM'
self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model) self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2] samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
@ -946,13 +884,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None sampler = None
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs): def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
self.init_images = init_images self.init_images = init_images
self.resize_mode: int = resize_mode self.resize_mode: int = resize_mode
self.denoising_strength: float = denoising_strength self.denoising_strength: float = denoising_strength
self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
self.init_latent = None self.init_latent = None
self.image_mask = mask self.image_mask = mask
self.latent_mask = None self.latent_mask = None

View File

@ -46,7 +46,7 @@ class UpscalerRealESRGAN(Upscaler):
scale=info.scale, scale=info.scale,
model_path=info.local_data_path, model_path=info.local_data_path,
model=info.model(), model=info.model(),
half=not cmd_opts.no_half and not cmd_opts.upcast_sampling, half=not cmd_opts.no_half,
tile=opts.ESRGAN_tile, tile=opts.ESRGAN_tile,
tile_pad=opts.ESRGAN_tile_overlap, tile_pad=opts.ESRGAN_tile_overlap,
) )

View File

@ -29,7 +29,7 @@ class ImageSaveParams:
class CFGDenoiserParams: class CFGDenoiserParams:
def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond): def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps):
self.x = x self.x = x
"""Latent image representation in the process of being denoised""" """Latent image representation in the process of being denoised"""
@ -45,24 +45,6 @@ class CFGDenoiserParams:
self.total_sampling_steps = total_sampling_steps self.total_sampling_steps = total_sampling_steps
"""Total number of sampling steps planned""" """Total number of sampling steps planned"""
self.text_cond = text_cond
""" Encoder hidden states of text conditioning from prompt"""
self.text_uncond = text_uncond
""" Encoder hidden states of text conditioning from negative prompt"""
class CFGDenoisedParams:
def __init__(self, x, sampling_step, total_sampling_steps):
self.x = x
"""Latent image representation in the process of being denoised"""
self.sampling_step = sampling_step
"""Current Sampling step number"""
self.total_sampling_steps = total_sampling_steps
"""Total number of sampling steps planned"""
class UiTrainTabParams: class UiTrainTabParams:
def __init__(self, txt2img_preview_params): def __init__(self, txt2img_preview_params):
@ -86,7 +68,6 @@ callback_map = dict(
callbacks_before_image_saved=[], callbacks_before_image_saved=[],
callbacks_image_saved=[], callbacks_image_saved=[],
callbacks_cfg_denoiser=[], callbacks_cfg_denoiser=[],
callbacks_cfg_denoised=[],
callbacks_before_component=[], callbacks_before_component=[],
callbacks_after_component=[], callbacks_after_component=[],
callbacks_image_grid=[], callbacks_image_grid=[],
@ -169,14 +150,6 @@ def cfg_denoiser_callback(params: CFGDenoiserParams):
report_exception(c, 'cfg_denoiser_callback') report_exception(c, 'cfg_denoiser_callback')
def cfg_denoised_callback(params: CFGDenoisedParams):
for c in callback_map['callbacks_cfg_denoised']:
try:
c.callback(params)
except Exception:
report_exception(c, 'cfg_denoised_callback')
def before_component_callback(component, **kwargs): def before_component_callback(component, **kwargs):
for c in callback_map['callbacks_before_component']: for c in callback_map['callbacks_before_component']:
try: try:
@ -310,14 +283,6 @@ def on_cfg_denoiser(callback):
add_callback(callback_map['callbacks_cfg_denoiser'], callback) add_callback(callback_map['callbacks_cfg_denoiser'], callback)
def on_cfg_denoised(callback):
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
The callback is called with one argument:
- params: CFGDenoisedParams - parameters to be passed to the inner model and sampling state details.
"""
add_callback(callback_map['callbacks_cfg_denoised'], callback)
def on_before_component(callback): def on_before_component(callback):
"""register a function to be called before a component is created. """register a function to be called before a component is created.
The callback is called with arguments: The callback is called with arguments:

View File

@ -1,14 +1,16 @@
import os import os
import sys import sys
import traceback import traceback
import importlib.util
from types import ModuleType from types import ModuleType
def load_module(path): def load_module(path):
module_spec = importlib.util.spec_from_file_location(os.path.basename(path), path) with open(path, "r", encoding="utf8") as file:
module = importlib.util.module_from_spec(module_spec) text = file.read()
module_spec.loader.exec_module(module)
compiled = compile(text, path, 'exec')
module = ModuleType(os.path.basename(path))
exec(compiled, module.__dict__)
return module return module

View File

@ -6,16 +6,12 @@ from collections import namedtuple
import gradio as gr import gradio as gr
from modules.processing import StableDiffusionProcessing
from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing
AlwaysVisible = object() AlwaysVisible = object()
class PostprocessImageArgs:
def __init__(self, image):
self.image = image
class Script: class Script:
filename = None filename = None
args_from = None args_from = None
@ -33,11 +29,6 @@ class Script:
parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
""" """
paste_field_names = None
"""if set in ui(), this is a list of names of infotext fields; the fields will be sent through the
various "Send to <X>" buttons when clicked
"""
def title(self): def title(self):
"""this function should return the title of the script. This is what will be displayed in the dropdown menu.""" """this function should return the title of the script. This is what will be displayed in the dropdown menu."""
@ -74,7 +65,7 @@ class Script:
args contains all values returned by components from ui() args contains all values returned by components from ui()
""" """
pass raise NotImplementedError()
def process(self, p, *args): def process(self, p, *args):
""" """
@ -85,20 +76,6 @@ class Script:
pass pass
def before_process_batch(self, p, *args, **kwargs):
"""
Called before extra networks are parsed from the prompt, so you can add
new extra network keywords to the prompt with this callback.
**kwargs will have those items:
- batch_number - index of current batch, from 0 to number of batches-1
- prompts - list of prompts for current batch; you can change contents of this list but changing the number of entries will likely break things
- seeds - list of seeds for current batch
- subseeds - list of subseeds for current batch
"""
pass
def process_batch(self, p, *args, **kwargs): def process_batch(self, p, *args, **kwargs):
""" """
Same as process(), but called for every batch. Same as process(), but called for every batch.
@ -123,13 +100,6 @@ class Script:
pass pass
def postprocess_image(self, p, pp: PostprocessImageArgs, *args):
"""
Called for every image after it has been generated.
"""
pass
def postprocess(self, p, processed, *args): def postprocess(self, p, processed, *args):
""" """
This function is called after processing ends for AlwaysVisible scripts. This function is called after processing ends for AlwaysVisible scripts.
@ -239,15 +209,7 @@ def load_scripts():
elif issubclass(script_class, scripts_postprocessing.ScriptPostprocessing): elif issubclass(script_class, scripts_postprocessing.ScriptPostprocessing):
postprocessing_scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module)) postprocessing_scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
def orderby(basedir): for scriptfile in sorted(scripts_list):
# 1st webui, 2nd extensions-builtin, 3rd extensions
priority = {os.path.join(paths.script_path, "extensions-builtin"):1, paths.script_path:0}
for key in priority:
if basedir.startswith(key):
return priority[key]
return 9999
for scriptfile in sorted(scripts_list, key=lambda x: [orderby(x.basedir), x]):
try: try:
if scriptfile.basedir != paths.script_path: if scriptfile.basedir != paths.script_path:
sys.path = [scriptfile.basedir] + sys.path sys.path = [scriptfile.basedir] + sys.path
@ -283,18 +245,13 @@ class ScriptRunner:
self.alwayson_scripts = [] self.alwayson_scripts = []
self.titles = [] self.titles = []
self.infotext_fields = [] self.infotext_fields = []
self.paste_field_names = []
def initialize_scripts(self, is_img2img): def initialize_scripts(self, is_img2img):
from modules import scripts_auto_postprocessing
self.scripts.clear() self.scripts.clear()
self.alwayson_scripts.clear() self.alwayson_scripts.clear()
self.selectable_scripts.clear() self.selectable_scripts.clear()
auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data() for script_class, path, basedir, script_module in scripts_data:
for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data:
script = script_class() script = script_class()
script.filename = path script.filename = path
script.is_txt2img = not is_img2img script.is_txt2img = not is_img2img
@ -332,9 +289,6 @@ class ScriptRunner:
if script.infotext_fields is not None: if script.infotext_fields is not None:
self.infotext_fields += script.infotext_fields self.infotext_fields += script.infotext_fields
if script.paste_field_names is not None:
self.paste_field_names += script.paste_field_names
inputs += controls inputs += controls
inputs_alwayson += [script.alwayson for _ in controls] inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs) script.args_to = len(inputs)
@ -376,23 +330,9 @@ class ScriptRunner:
outputs=[script.group for script in self.selectable_scripts] outputs=[script.group for script in self.selectable_scripts]
) )
self.script_load_ctr = 0
def onload_script_visibility(params):
title = params.get('Script', None)
if title:
title_index = self.titles.index(title)
visibility = title_index == self.script_load_ctr
self.script_load_ctr = (self.script_load_ctr + 1) % len(self.titles)
return gr.update(visible=visibility)
else:
return gr.update(visible=False)
self.infotext_fields.append( (dropdown, lambda x: gr.update(value=x.get('Script', 'None'))) )
self.infotext_fields.extend( [(script.group, onload_script_visibility) for script in self.selectable_scripts] )
return inputs return inputs
def run(self, p, *args): def run(self, p: StableDiffusionProcessing, *args):
script_index = args[0] script_index = args[0]
if script_index == 0: if script_index == 0:
@ -419,15 +359,6 @@ class ScriptRunner:
print(f"Error running process: {script.filename}", file=sys.stderr) print(f"Error running process: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
def before_process_batch(self, p, **kwargs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.before_process_batch(p, *script_args, **kwargs)
except Exception:
print(f"Error running before_process_batch: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def process_batch(self, p, **kwargs): def process_batch(self, p, **kwargs):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
try: try:
@ -455,15 +386,6 @@ class ScriptRunner:
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr) print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
def postprocess_image(self, p, pp: PostprocessImageArgs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_image(p, pp, *script_args)
except Exception:
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def before_component(self, component, **kwargs): def before_component(self, component, **kwargs):
for script in self.scripts: for script in self.scripts:
try: try:
@ -521,18 +443,6 @@ def reload_scripts():
scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner() scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner()
def add_classes_to_gradio_component(comp):
"""
this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
"""
comp.elem_classes = ["gradio-" + comp.get_block_name(), *(comp.elem_classes or [])]
if getattr(comp, 'multiselect', False):
comp.elem_classes.append('multiselect')
def IOComponent_init(self, *args, **kwargs): def IOComponent_init(self, *args, **kwargs):
if scripts_current is not None: if scripts_current is not None:
scripts_current.before_component(self, **kwargs) scripts_current.before_component(self, **kwargs)
@ -541,8 +451,6 @@ def IOComponent_init(self, *args, **kwargs):
res = original_IOComponent_init(self, *args, **kwargs) res = original_IOComponent_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
script_callbacks.after_component_callback(self, **kwargs) script_callbacks.after_component_callback(self, **kwargs)
if scripts_current is not None: if scripts_current is not None:
@ -553,15 +461,3 @@ def IOComponent_init(self, *args, **kwargs):
original_IOComponent_init = gr.components.IOComponent.__init__ original_IOComponent_init = gr.components.IOComponent.__init__
gr.components.IOComponent.__init__ = IOComponent_init gr.components.IOComponent.__init__ = IOComponent_init
def BlockContext_init(self, *args, **kwargs):
res = original_BlockContext_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
return res
original_BlockContext_init = gr.blocks.BlockContext.__init__
gr.blocks.BlockContext.__init__ = BlockContext_init

View File

@ -1,42 +0,0 @@
from modules import scripts, scripts_postprocessing, shared
class ScriptPostprocessingForMainUI(scripts.Script):
def __init__(self, script_postproc):
self.script: scripts_postprocessing.ScriptPostprocessing = script_postproc
self.postprocessing_controls = None
def title(self):
return self.script.name
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
self.postprocessing_controls = self.script.ui()
return self.postprocessing_controls.values()
def postprocess_image(self, p, script_pp, *args):
args_dict = {k: v for k, v in zip(self.postprocessing_controls, args)}
pp = scripts_postprocessing.PostprocessedImage(script_pp.image)
pp.info = {}
self.script.process(pp, **args_dict)
p.extra_generation_params.update(pp.info)
script_pp.image = pp.image
def create_auto_preprocessing_script_data():
from modules import scripts
res = []
for name in shared.opts.postprocessing_enable_in_main_ui:
script = next(iter([x for x in scripts.postprocessing_scripts_data if x.script_class.name == name]), None)
if script is None:
continue
constructor = lambda s=script: ScriptPostprocessingForMainUI(s.script_class())
res.append(scripts.ScriptClassData(script_class=constructor, path=script.path, basedir=script.basedir, module=script.module))
return res

View File

@ -46,8 +46,6 @@ class ScriptPostprocessing:
pass pass
def wrap_call(func, filename, funcname, *args, default=None, **kwargs): def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try: try:
res = func(*args, **kwargs) res = func(*args, **kwargs)
@ -70,9 +68,6 @@ class ScriptPostprocessingRunner:
script: ScriptPostprocessing = script_class() script: ScriptPostprocessing = script_class()
script.filename = path script.filename = path
if script.name == "Simple Upscale":
continue
self.scripts.append(script) self.scripts.append(script)
def create_script_ui(self, script, inputs): def create_script_ui(self, script, inputs):
@ -92,11 +87,12 @@ class ScriptPostprocessingRunner:
import modules.scripts import modules.scripts
self.initialize_scripts(modules.scripts.postprocessing_scripts_data) self.initialize_scripts(modules.scripts.postprocessing_scripts_data)
scripts_order = shared.opts.postprocessing_operation_order scripts_order = [x.lower().strip() for x in shared.opts.postprocessing_scipts_order.split(",")]
def script_score(name): def script_score(name):
name = name.lower()
for i, possible_match in enumerate(scripts_order): for i, possible_match in enumerate(scripts_order):
if possible_match == name: if possible_match in name:
return i return i
return len(self.scripts) return len(self.scripts)
@ -109,7 +105,7 @@ class ScriptPostprocessingRunner:
inputs = [] inputs = []
for script in self.scripts_in_preferred_order(): for script in self.scripts_in_preferred_order():
with gr.Row() as group: with gr.Box() as group:
self.create_script_ui(script, inputs) self.create_script_ui(script, inputs)
script.group = group script.group = group
@ -149,4 +145,3 @@ class ScriptPostprocessingRunner:
def image_changed(self): def image_changed(self):
for script in self.scripts_in_preferred_order(): for script in self.scripts_in_preferred_order():
script.image_changed() script.image_changed()

View File

@ -20,9 +20,8 @@ class DisableInitialization:
``` ```
""" """
def __init__(self, disable_clip=True): def __init__(self):
self.replaced = [] self.replaced = []
self.disable_clip = disable_clip
def replace(self, obj, field, func): def replace(self, obj, field, func):
original = getattr(obj, field, None) original = getattr(obj, field, None)
@ -76,8 +75,6 @@ class DisableInitialization:
self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing) self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing)
self.replace(torch.nn.init, '_no_grad_normal_', do_nothing) self.replace(torch.nn.init, '_no_grad_normal_', do_nothing)
self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing) self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing)
if self.disable_clip:
self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained) self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained) self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model) self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)

View File

@ -1,6 +1,5 @@
import torch import torch
from torch.nn.functional import silu from torch.nn.functional import silu
from types import MethodType
import modules.textual_inversion.textual_inversion import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
@ -37,23 +36,11 @@ def apply_optimizations():
optimization_method = None optimization_method = None
can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(getattr(torch.nn.functional, "scaled_dot_product_attention")) # not everyone has torch 2.x to use sdp
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
print("Applying xformers cross attention optimization.") print("Applying xformers cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
optimization_method = 'xformers' optimization_method = 'xformers'
elif cmd_opts.opt_sdp_no_mem_attention and can_use_sdp:
print("Applying scaled dot product cross attention optimization (without memory efficient attention).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_no_mem_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_no_mem_attnblock_forward
optimization_method = 'sdp-no-mem'
elif cmd_opts.opt_sdp_attention and can_use_sdp:
print("Applying scaled dot product cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_attnblock_forward
optimization_method = 'sdp'
elif cmd_opts.opt_sub_quad_attention: elif cmd_opts.opt_sub_quad_attention:
print("Applying sub-quadratic cross attention optimization.") print("Applying sub-quadratic cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward
@ -89,54 +76,6 @@ def fix_checkpoint():
pass pass
def weighted_loss(sd_model, pred, target, mean=True):
#Calculate the weight normally, but ignore the mean
loss = sd_model._old_get_loss(pred, target, mean=False)
#Check if we have weights available
weight = getattr(sd_model, '_custom_loss_weight', None)
if weight is not None:
loss *= weight
#Return the loss, as mean if specified
return loss.mean() if mean else loss
def weighted_forward(sd_model, x, c, w, *args, **kwargs):
try:
#Temporarily append weights to a place accessible during loss calc
sd_model._custom_loss_weight = w
#Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
#Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
if not hasattr(sd_model, '_old_get_loss'):
sd_model._old_get_loss = sd_model.get_loss
sd_model.get_loss = MethodType(weighted_loss, sd_model)
#Run the standard forward function, but with the patched 'get_loss'
return sd_model.forward(x, c, *args, **kwargs)
finally:
try:
#Delete temporary weights if appended
del sd_model._custom_loss_weight
except AttributeError as e:
pass
#If we have an old loss function, reset the loss function to the original one
if hasattr(sd_model, '_old_get_loss'):
sd_model.get_loss = sd_model._old_get_loss
del sd_model._old_get_loss
def apply_weighted_forward(sd_model):
#Add new function 'weighted_forward' that can be called to calc weighted loss
sd_model.weighted_forward = MethodType(weighted_forward, sd_model)
def undo_weighted_forward(sd_model):
try:
del sd_model.weighted_forward
except AttributeError as e:
pass
class StableDiffusionModelHijack: class StableDiffusionModelHijack:
fixes = None fixes = None
comments = [] comments = []
@ -165,10 +104,6 @@ class StableDiffusionModelHijack:
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self) m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
apply_weighted_forward(m)
if m.cond_stage_key == "edit":
sd_hijack_unet.hijack_ddpm_edit()
self.optimization_method = apply_optimizations() self.optimization_method = apply_optimizations()
self.clip = m.cond_stage_model self.clip = m.cond_stage_model
@ -196,9 +131,6 @@ class StableDiffusionModelHijack:
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
m.cond_stage_model = m.cond_stage_model.wrapped m.cond_stage_model = m.cond_stage_model.wrapped
undo_optimizations()
undo_weighted_forward(m)
self.apply_circular(False) self.apply_circular(False)
self.layers = None self.layers = None
self.clip = None self.clip = None
@ -239,7 +171,7 @@ class EmbeddingsWithFixes(torch.nn.Module):
vecs = [] vecs = []
for fixes, tensor in zip(batch_fixes, inputs_embeds): for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes: for offset, embedding in fixes:
emb = devices.cond_cast_unet(embedding.vec) emb = embedding.vec
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0]) emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]) tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])

View File

@ -11,7 +11,6 @@ import ldm.models.diffusion.plms
from ldm.models.diffusion.ddpm import LatentDiffusion from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.models.diffusion.plms import PLMSSampler from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler, noise_like from ldm.models.diffusion.ddim import DDIMSampler, noise_like
from ldm.models.diffusion.sampling_util import norm_thresholding
@torch.no_grad() @torch.no_grad()
@ -97,6 +96,15 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
return x_prev, pred_x0, e_t return x_prev, pred_x0, e_t
def should_hijack_inpainting(checkpoint_info):
from modules import sd_models
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower()
return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename
def do_inpainting_hijack(): def do_inpainting_hijack():
# p_sample_plms is needed because PLMS can't work with dicts as conditionings # p_sample_plms is needed because PLMS can't work with dicts as conditionings

View File

@ -1,13 +0,0 @@
import collections
import os.path
import sys
import gc
import time
def should_hijack_ip2p(checkpoint_info):
from modules import sd_models_config
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
cfg_basename = os.path.basename(sd_models_config.find_checkpoint_config_near_filename(checkpoint_info)).lower()
return "pix2pix" in ckpt_basename and not "pix2pix" in cfg_basename

View File

@ -9,7 +9,7 @@ from torch import einsum
from ldm.util import default from ldm.util import default
from einops import rearrange from einops import rearrange
from modules import shared, errors, devices from modules import shared, errors
from modules.hypernetworks import hypernetwork from modules.hypernetworks import hypernetwork
from .sub_quadratic_attention import efficient_dot_product_attention from .sub_quadratic_attention import efficient_dot_product_attention
@ -52,12 +52,7 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in del q_in, k_in, v_in
dtype = q.dtype r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
if shared.opts.upcast_attn:
q, k, v = q.float(), k.float(), v.float()
with devices.without_autocast(disable=not shared.opts.upcast_attn):
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], 2): for i in range(0, q.shape[0], 2):
end = i + 2 end = i + 2
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
@ -70,8 +65,6 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
del s2 del s2
del q, k, v del q, k, v
r1 = r1.to(dtype)
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1 del r1
@ -89,12 +82,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
k_in = self.to_k(context_k) k_in = self.to_k(context_k)
v_in = self.to_v(context_v) v_in = self.to_v(context_v)
dtype = q_in.dtype k_in *= self.scale
if shared.opts.upcast_attn:
q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float()
with devices.without_autocast(disable=not shared.opts.upcast_attn):
k_in = k_in * self.scale
del context, x del context, x
@ -134,8 +122,6 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
del q, k, v del q, k, v
r1 = r1.to(dtype)
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1 del r1
@ -218,20 +204,12 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
context = default(context, x) context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
k = self.to_k(context_k) k = self.to_k(context_k) * self.scale
v = self.to_v(context_v) v = self.to_v(context_v)
del context, context_k, context_v, x del context, context_k, context_v, x
dtype = q.dtype
if shared.opts.upcast_attn:
q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float()
with devices.without_autocast(disable=not shared.opts.upcast_attn):
k = k * self.scale
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = einsum_op(q, k, v) r = einsum_op(q, k, v)
r = r.to(dtype)
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
# -- End of code from https://github.com/invoke-ai/InvokeAI -- # -- End of code from https://github.com/invoke-ai/InvokeAI --
@ -256,14 +234,8 @@ def sub_quad_attention_forward(self, x, context=None, mask=None):
k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
x = x.to(dtype)
x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2) x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)
out_proj, dropout = self.to_out out_proj, dropout = self.to_out
@ -296,7 +268,6 @@ def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_
query_chunk_size = q_tokens query_chunk_size = q_tokens
kv_chunk_size = k_tokens kv_chunk_size = k_tokens
with devices.without_autocast(disable=q.dtype == v.dtype):
return efficient_dot_product_attention( return efficient_dot_product_attention(
q, q,
k, k,
@ -335,63 +306,11 @@ def xformers_attention_forward(self, x, context=None, mask=None):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in del q_in, k_in, v_in
dtype = q.dtype
if shared.opts.upcast_attn:
q, k, v = q.float(), k.float(), v.float()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v)) out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
out = out.to(dtype)
out = rearrange(out, 'b n h d -> b n (h d)', h=h) out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out) return self.to_out(out)
# Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py
# The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface
def scaled_dot_product_attention_forward(self, x, context=None, mask=None):
batch_size, sequence_length, inner_dim = x.shape
if mask is not None:
mask = self.prepare_attention_mask(mask, sequence_length, batch_size)
mask = mask.view(batch_size, self.heads, -1, mask.shape[-1])
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
head_dim = inner_dim // h
q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
del q_in, k_in, v_in
dtype = q.dtype
if shared.opts.upcast_attn:
q, k, v = q.float(), k.float(), v.float()
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, h * head_dim)
hidden_states = hidden_states.to(dtype)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None):
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
return scaled_dot_product_attention_forward(self, x, context, mask)
def cross_attention_attnblock_forward(self, x): def cross_attention_attnblock_forward(self, x):
h_ = x h_ = x
h_ = self.norm(h_) h_ = self.norm(h_)
@ -459,44 +378,16 @@ def xformers_attnblock_forward(self, x):
v = self.v(h_) v = self.v(h_)
b, c, h, w = q.shape b, c, h, w = q.shape
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
q = q.contiguous() q = q.contiguous()
k = k.contiguous() k = k.contiguous()
v = v.contiguous() v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v)) out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v))
out = out.to(dtype)
out = rearrange(out, 'b (h w) c -> b c h w', h=h) out = rearrange(out, 'b (h w) c -> b c h w', h=h)
out = self.proj_out(out) out = self.proj_out(out)
return x + out return x + out
except NotImplementedError: except NotImplementedError:
return cross_attention_attnblock_forward(self, x) return cross_attention_attnblock_forward(self, x)
def sdp_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
out = out.to(dtype)
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
out = self.proj_out(out)
return x + out
def sdp_no_mem_attnblock_forward(self, x):
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
return sdp_attnblock_forward(self, x)
def sub_quad_attnblock_forward(self, x): def sub_quad_attnblock_forward(self, x):
h_ = x h_ = x
h_ = self.norm(h_) h_ = self.norm(h_)

View File

@ -1,8 +1,4 @@
import torch import torch
from packaging import version
from modules import devices
from modules.sd_hijack_utils import CondFunc
class TorchHijackForUnet: class TorchHijackForUnet:
@ -32,48 +28,3 @@ class TorchHijackForUnet:
th = TorchHijackForUnet() th = TorchHijackForUnet()
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
if isinstance(cond, dict):
for y in cond.keys():
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
with devices.autocast():
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
class GELUHijack(torch.nn.GELU, torch.nn.Module):
def __init__(self, *args, **kwargs):
torch.nn.GELU.__init__(self, *args, **kwargs)
def forward(self, x):
if devices.unet_needs_upcast:
return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
else:
return torch.nn.GELU.forward(self, x)
ddpm_edit_hijack = None
def hijack_ddpm_edit():
global ddpm_edit_hijack
if not ddpm_edit_hijack:
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)

View File

@ -1,28 +0,0 @@
import importlib
class CondFunc:
def __new__(cls, orig_func, sub_func, cond_func):
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
func_path = orig_func.split('.')
for i in range(len(func_path)-1, -1, -1):
try:
resolved_obj = importlib.import_module('.'.join(func_path[:i]))
break
except ImportError:
pass
for attr_name in func_path[i:-1]:
resolved_obj = getattr(resolved_obj, attr_name)
orig_func = getattr(resolved_obj, func_path[-1])
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
self.__init__(orig_func, sub_func, cond_func)
return lambda *args, **kwargs: self(*args, **kwargs)
def __init__(self, orig_func, sub_func, cond_func):
self.__orig_func = orig_func
self.__sub_func = sub_func
self.__cond_func = cond_func
def __call__(self, *args, **kwargs):
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
return self.__sub_func(self.__orig_func, *args, **kwargs)
else:
return self.__orig_func(*args, **kwargs)

View File

@ -2,6 +2,8 @@ import collections
import os.path import os.path
import sys import sys
import gc import gc
import time
from collections import namedtuple
import torch import torch
import re import re
import safetensors.torch import safetensors.torch
@ -12,13 +14,12 @@ import ldm.modules.midas as midas
from ldm.util import instantiate_from_config from ldm.util import instantiate_from_config
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes
from modules.paths import models_path from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
from modules.timer import Timer
model_dir = "Stable-diffusion" model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(paths.models_path, model_dir)) model_path = os.path.abspath(os.path.join(models_path, model_dir))
checkpoints_list = {} checkpoints_list = {}
checkpoint_alisases = {} checkpoint_alisases = {}
@ -41,7 +42,6 @@ class CheckpointInfo:
name = name[1:] name = name[1:]
self.name = name self.name = name
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
self.hash = model_hash(filename) self.hash = model_hash(filename)
@ -59,18 +59,14 @@ class CheckpointInfo:
def calculate_shorthash(self): def calculate_shorthash(self):
self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.name) self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.name)
if self.sha256 is None:
return
self.shorthash = self.sha256[0:10] self.shorthash = self.sha256[0:10]
if self.shorthash not in self.ids: if self.shorthash not in self.ids:
self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] self.ids += [self.shorthash, self.sha256]
checkpoints_list.pop(self.title)
self.title = f'{self.name} [{self.shorthash}]'
self.register() self.register()
self.title = f'{self.name} [{self.shorthash}]'
return self.shorthash return self.shorthash
@ -102,18 +98,23 @@ def checkpoint_tiles():
return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key) return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key)
def find_checkpoint_config(info):
if info is None:
return shared.cmd_opts.config
config = os.path.splitext(info.filename)[0] + ".yaml"
if os.path.exists(config):
return config
return shared.cmd_opts.config
def list_models(): def list_models():
checkpoints_list.clear() checkpoints_list.clear()
checkpoint_alisases.clear() checkpoint_alisases.clear()
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"])
cmd_ckpt = shared.cmd_opts.ckpt cmd_ckpt = shared.cmd_opts.ckpt
if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
model_url = None
else:
model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
if os.path.exists(cmd_ckpt): if os.path.exists(cmd_ckpt):
checkpoint_info = CheckpointInfo(cmd_ckpt) checkpoint_info = CheckpointInfo(cmd_ckpt)
checkpoint_info.register() checkpoint_info.register()
@ -122,7 +123,7 @@ def list_models():
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in sorted(model_list, key=str.lower): for filename in model_list:
checkpoint_info = CheckpointInfo(filename) checkpoint_info = CheckpointInfo(filename)
checkpoint_info.register() checkpoint_info.register()
@ -168,7 +169,7 @@ def select_checkpoint():
print(f" - directory {model_path}", file=sys.stderr) print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None: if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
print("Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations. The program will exit.", file=sys.stderr) print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1) exit(1)
checkpoint_info = next(iter(checkpoints_list.values())) checkpoint_info = next(iter(checkpoints_list.values()))
@ -178,7 +179,7 @@ def select_checkpoint():
return checkpoint_info return checkpoint_info
checkpoint_dict_replacements = { chckpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.', 'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.', 'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.', 'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
@ -186,7 +187,7 @@ checkpoint_dict_replacements = {
def transform_checkpoint_dict_key(k): def transform_checkpoint_dict_key(k):
for text, replacement in checkpoint_dict_replacements.items(): for text, replacement in chckpoint_dict_replacements.items():
if k.startswith(text): if k.startswith(text):
k = replacement + k[len(text):] k = replacement + k[len(text):]
@ -210,34 +211,12 @@ def get_state_dict_from_checkpoint(pl_sd):
return pl_sd return pl_sd
def read_metadata_from_safetensors(filename):
import json
with open(filename, mode="rb") as file:
metadata_len = file.read(8)
metadata_len = int.from_bytes(metadata_len, "little")
json_start = file.read(2)
assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
json_data = json_start + file.read(metadata_len-2)
json_obj = json.loads(json_data)
res = {}
for k, v in json_obj.get("__metadata__", {}).items():
res[k] = v
if isinstance(v, str) and v[0:1] == '{':
try:
res[k] = json.loads(v)
except Exception as e:
pass
return res
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None): def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
_, extension = os.path.splitext(checkpoint_file) _, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors": if extension.lower() == ".safetensors":
device = map_location or shared.weight_load_location or devices.get_optimal_device_name() device = map_location or shared.weight_load_location
if device is None:
device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu"
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
else: else:
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
@ -249,72 +228,52 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None
return sd return sd
def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer): def load_model_weights(model, checkpoint_info: CheckpointInfo):
title = checkpoint_info.title
sd_model_hash = checkpoint_info.calculate_shorthash() sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash") if checkpoint_info.title != title:
if checkpoint_info in checkpoints_loaded:
# use checkpoint cache
print(f"Loading weights [{sd_model_hash}] from cache")
return checkpoints_loaded[checkpoint_info]
print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
res = read_state_dict(checkpoint_info.filename)
timer.record("load weights from disk")
return res
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
if state_dict is None: cache_enabled = shared.opts.sd_checkpoint_cache > 0
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
model.load_state_dict(state_dict, strict=False) if cache_enabled and checkpoint_info in checkpoints_loaded:
del state_dict # use checkpoint cache
timer.record("apply weights to model") print(f"Loading weights [{sd_model_hash}] from cache")
model.load_state_dict(checkpoints_loaded[checkpoint_info])
else:
# load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
if shared.opts.sd_checkpoint_cache > 0: sd = read_state_dict(checkpoint_info.filename)
model.load_state_dict(sd, strict=False)
del sd
if cache_enabled:
# cache newly loaded model # cache newly loaded model
checkpoints_loaded[checkpoint_info] = model.state_dict().copy() checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast: if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last) model.to(memory_format=torch.channels_last)
timer.record("apply channels_last")
if not shared.cmd_opts.no_half: if not shared.cmd_opts.no_half:
vae = model.first_stage_model vae = model.first_stage_model
depth_model = getattr(model, 'depth_model', None)
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16 # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
if shared.cmd_opts.no_half_vae: if shared.cmd_opts.no_half_vae:
model.first_stage_model = None model.first_stage_model = None
# with --upcast-sampling, don't convert the depth model weights to float16
if shared.cmd_opts.upcast_sampling and depth_model:
model.depth_model = None
model.half() model.half()
model.first_stage_model = vae model.first_stage_model = vae
if depth_model:
model.depth_model = depth_model
timer.record("apply half()")
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
devices.dtype_unet = model.model.diffusion_model.dtype
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
model.first_stage_model.to(devices.dtype_vae) model.first_stage_model.to(devices.dtype_vae)
timer.record("apply dtype to VAE")
# clean up cache if limit is reached # clean up cache if limit is reached
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: if cache_enabled:
checkpoints_loaded.popitem(last=False) while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
checkpoints_loaded.popitem(last=False) # LRU
model.sd_model_hash = sd_model_hash model.sd_model_hash = sd_model_hash
model.sd_model_checkpoint = checkpoint_info.filename model.sd_model_checkpoint = checkpoint_info.filename
@ -327,7 +286,6 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
sd_vae.clear_loaded_vae() sd_vae.clear_loaded_vae()
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename) vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename)
sd_vae.load_vae(model, vae_file, vae_source) sd_vae.load_vae(model, vae_file, vae_source)
timer.record("load VAE")
def enable_midas_autodownload(): def enable_midas_autodownload():
@ -340,7 +298,7 @@ def enable_midas_autodownload():
location automatically. location automatically.
""" """
midas_path = os.path.join(paths.models_path, 'midas') midas_path = os.path.join(models_path, 'midas')
# stable-diffusion-stability-ai hard-codes the midas model path to # stable-diffusion-stability-ai hard-codes the midas model path to
# a location that differs from where other scripts using this model look. # a location that differs from where other scripts using this model look.
@ -373,31 +331,24 @@ def enable_midas_autodownload():
midas.api.load_model = load_model_wrapper midas.api.load_model = load_model_wrapper
def repair_config(sd_config): class Timer:
def __init__(self):
self.start = time.time()
if not hasattr(sd_config.model.params, "use_ema"): def elapsed(self):
sd_config.model.params.use_ema = False end = time.time()
res = end - self.start
if shared.cmd_opts.no_half: self.start = end
sd_config.model.params.unet_config.params.use_fp16 = False return res
elif shared.cmd_opts.upcast_sampling:
sd_config.model.params.unet_config.params.use_fp16 = True
if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
# For UnCLIP-L, override the hardcoded karlo directory
if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
karlo_path = os.path.join(paths.models_path, 'karlo')
sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight' def load_model(checkpoint_info=None):
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_to_load_state_dict=None):
from modules import lowvram, sd_hijack from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint() checkpoint_info = checkpoint_info or select_checkpoint()
checkpoint_config = find_checkpoint_config(checkpoint_info)
if checkpoint_config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_config}")
if shared.sd_model: if shared.sd_model:
sd_hijack.model_hijack.undo_hijack(shared.sd_model) sd_hijack.model_hijack.undo_hijack(shared.sd_model)
@ -405,30 +356,29 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_
gc.collect() gc.collect()
devices.torch_gc() devices.torch_gc()
sd_config = OmegaConf.load(checkpoint_config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config.model.params.conditioning_key = "hybrid"
sd_config.model.params.unet_config.params.in_channels = 9
sd_config.model.params.finetune_keys = None
if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False
do_inpainting_hijack() do_inpainting_hijack()
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
timer = Timer() timer = Timer()
if already_loaded_state_dict is not None:
state_dict = already_loaded_state_dict
else:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict
timer.record("find config")
sd_config = OmegaConf.load(checkpoint_config)
repair_config(sd_config)
timer.record("load config")
print(f"Creating model from config: {checkpoint_config}")
sd_model = None sd_model = None
try: try:
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd): with sd_disable_initialization.DisableInitialization():
sd_model = instantiate_from_config(sd_config.model) sd_model = instantiate_from_config(sd_config.model)
except Exception as e: except Exception as e:
pass pass
@ -437,35 +387,29 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr) print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
sd_model = instantiate_from_config(sd_config.model) sd_model = instantiate_from_config(sd_config.model)
sd_model.used_config = checkpoint_config elapsed_create = timer.elapsed()
timer.record("create model") load_model_weights(sd_model, checkpoint_info)
load_model_weights(sd_model, checkpoint_info, state_dict, timer) elapsed_load_weights = timer.elapsed()
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
else: else:
sd_model.to(shared.device) sd_model.to(shared.device)
timer.record("move model to device")
sd_hijack.model_hijack.hijack(sd_model) sd_hijack.model_hijack.hijack(sd_model)
timer.record("hijack")
sd_model.eval() sd_model.eval()
shared.sd_model = sd_model shared.sd_model = sd_model
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
timer.record("load textual inversion embeddings")
script_callbacks.model_loaded_callback(sd_model) script_callbacks.model_loaded_callback(sd_model)
timer.record("scripts callbacks") elapsed_the_rest = timer.elapsed()
print(f"Model loaded in {timer.summary()}.") print(f"Model loaded in {elapsed_create + elapsed_load_weights + elapsed_the_rest:.1f}s ({elapsed_create:.1f}s create model, {elapsed_load_weights:.1f}s load weights).")
return sd_model return sd_model
@ -476,7 +420,6 @@ def reload_model_weights(sd_model=None, info=None):
if not sd_model: if not sd_model:
sd_model = shared.sd_model sd_model = shared.sd_model
if sd_model is None: # previous model load failed if sd_model is None: # previous model load failed
current_checkpoint_info = None current_checkpoint_info = None
else: else:
@ -484,6 +427,14 @@ def reload_model_weights(sd_model=None, info=None):
if sd_model.sd_model_checkpoint == checkpoint_info.filename: if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return return
checkpoint_config = find_checkpoint_config(current_checkpoint_info)
if current_checkpoint_info is None or checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu() lowvram.send_everything_to_cpu()
else: else:
@ -493,55 +444,21 @@ def reload_model_weights(sd_model=None, info=None):
timer = Timer() timer = Timer()
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
timer.record("find config")
if sd_model is None or checkpoint_config != sd_model.used_config:
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info, already_loaded_state_dict=state_dict)
return shared.sd_model
try: try:
load_model_weights(sd_model, checkpoint_info, state_dict, timer) load_model_weights(sd_model, checkpoint_info)
except Exception as e: except Exception as e:
print("Failed to load checkpoint, restoring previous") print("Failed to load checkpoint, restoring previous")
load_model_weights(sd_model, current_checkpoint_info, None, timer) load_model_weights(sd_model, current_checkpoint_info)
raise raise
finally: finally:
sd_hijack.model_hijack.hijack(sd_model) sd_hijack.model_hijack.hijack(sd_model)
timer.record("hijack")
script_callbacks.model_loaded_callback(sd_model) script_callbacks.model_loaded_callback(sd_model)
timer.record("script callbacks")
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device) sd_model.to(devices.device)
timer.record("move model to device")
print(f"Weights loaded in {timer.summary()}.") elapsed = timer.elapsed()
return sd_model print(f"Weights loaded in {elapsed:.1f}s.")
def unload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
timer = Timer()
if shared.sd_model:
# shared.sd_model.cond_stage_model.to(devices.cpu)
# shared.sd_model.first_stage_model.to(devices.cpu)
shared.sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
shared.sd_model = None
sd_model = None
gc.collect()
devices.torch_gc()
torch.cuda.empty_cache()
print(f"Unloaded weights {timer.summary()}.")
return sd_model return sd_model

View File

@ -1,119 +0,0 @@
import re
import os
import torch
from modules import shared, paths, sd_disable_initialization
sd_configs_path = shared.sd_configs_path
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
config_default = shared.sd_default_config
config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
def is_using_v_parameterization_for_sd2(state_dict):
"""
Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
"""
import ldm.modules.diffusionmodules.openaimodel
from modules import devices
device = devices.cpu
with sd_disable_initialization.DisableInitialization():
unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
use_checkpoint=True,
use_fp16=False,
image_size=32,
in_channels=4,
out_channels=4,
model_channels=320,
attention_resolutions=[4, 2, 1],
num_res_blocks=2,
channel_mult=[1, 2, 4, 4],
num_head_channels=64,
use_spatial_transformer=True,
use_linear_in_transformer=True,
transformer_depth=1,
context_dim=1024,
legacy=False
)
unet.eval()
with torch.no_grad():
unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
unet.load_state_dict(unet_sd, strict=True)
unet.to(device=device, dtype=torch.float)
test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
return out < -1
def guess_model_config_from_state_dict(sd, filename):
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
return config_depth_model
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
return config_unclip
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
return config_unopenclip
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
if diffusion_model_input.shape[1] == 9:
return config_sd2_inpainting
elif is_using_v_parameterization_for_sd2(sd):
return config_sd2v
else:
return config_sd2
if diffusion_model_input is not None:
if diffusion_model_input.shape[1] == 9:
return config_inpainting
if diffusion_model_input.shape[1] == 8:
return config_instruct_pix2pix
if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
return config_alt_diffusion
return config_default
def find_checkpoint_config(state_dict, info):
if info is None:
return guess_model_config_from_state_dict(state_dict, "")
config = find_checkpoint_config_near_filename(info)
if config is not None:
return config
return guess_model_config_from_state_dict(state_dict, info.filename)
def find_checkpoint_config_near_filename(info):
if info is None:
return None
config = os.path.splitext(info.filename)[0] + ".yaml"
if os.path.exists(config):
return config
return None

View File

@ -1,11 +1,53 @@
from modules import sd_samplers_compvis, sd_samplers_kdiffusion, shared from collections import namedtuple, deque
import numpy as np
from math import floor
import torch
import tqdm
from PIL import Image
import inspect
import k_diffusion.sampling
import torchsde._brownian.brownian_interval
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
from modules import prompt_parser, devices, processing, images, sd_vae_approx
# imports for functions that previously were here and are used by other modules from modules.shared import opts, cmd_opts, state
from modules.sd_samplers_common import samples_to_image_grid, sample_to_image import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {}),
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
]
samplers_data_k_diffusion = [
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
]
all_samplers = [ all_samplers = [
*sd_samplers_kdiffusion.samplers_data_k_diffusion, *samplers_data_k_diffusion,
*sd_samplers_compvis.samplers_data_compvis, SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
] ]
all_samplers_map = {x.name: x for x in all_samplers} all_samplers_map = {x.name: x for x in all_samplers}
@ -31,8 +73,8 @@ def create_sampler(name, model):
def set_samplers(): def set_samplers():
global samplers, samplers_for_img2img global samplers, samplers_for_img2img
hidden = set(shared.opts.hide_samplers) hidden = set(opts.hide_samplers)
hidden_img2img = set(shared.opts.hide_samplers + ['PLMS', 'UniPC']) hidden_img2img = set(opts.hide_samplers + ['PLMS'])
samplers = [x for x in all_samplers if x.name not in hidden] samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
@ -45,3 +87,466 @@ def set_samplers():
set_samplers() set_samplers()
sampler_extra_params = {
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
def single_sample_to_image(sample, approximation=None):
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
class InterruptedException(BaseException):
pass
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
self.sampler_noises = None
self.step = 0
self.stop_at = None
self.eta = None
self.default_eta = 0.0
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def number_of_needed_noises(self, p):
return 0
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except InterruptedException:
return self.last_latent
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
if state.interrupted or state.skipped:
raise InterruptedException
if self.stop_at is not None and self.step > self.stop_at:
raise InterruptedException
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
if isinstance(cond, dict):
image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
# for DDIM, shapes must match, we can't just process cond and uncond independently;
# filling unconditional_conditioning with repeats of the last vector to match length is
# not 100% correct but should work well enough
if unconditional_conditioning.shape[1] < cond.shape[1]:
last_vector = unconditional_conditioning[:, -1:]
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
elif unconditional_conditioning.shape[1] > cond.shape[1]:
unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
if self.mask is not None:
self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
else:
self.last_latent = res[1]
store_latent(self.last_latent)
self.step += 1
state.sampling_step = self.step
shared.total_tqdm.update()
return res
def initialize(self, p):
self.eta = p.eta if p.eta is not None else opts.eta_ddim
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def adjust_steps_if_invalid(self, p, num_steps):
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
valid_step = 999 / (1000 // num_steps)
if valid_step == floor(valid_step):
return int(valid_step) + 1
return num_steps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
steps = self.adjust_steps_if_invalid(p, steps)
self.initialize(p)
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.init_latent = x
self.last_latent = x
self.step = 0
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
self.initialize(p)
self.init_latent = None
self.last_latent = x
self.step = 0
steps = self.adjust_steps_if_invalid(p, steps or p.steps)
# Wrap the conditioning models with additional image conditioning for inpainting model
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
if image_conditioning is not None:
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
return samples_ddim
class CFGDenoiser(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
self.mask = None
self.nmask = None
self.init_latent = None
self.step = 0
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
denoised = torch.clone(denoised_uncond)
for i, conds in enumerate(conds_list):
for cond_index, weight in conds:
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
return denoised
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped:
raise InterruptedException
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
sigma_in = denoiser_params.sigma
if tensor.shape[1] == uncond.shape[1]:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
store_latent(x_out[0:uncond.shape[0]])
elif opts.live_preview_content == "Negative prompt":
store_latent(x_out[-uncond.shape[0]:])
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.step += 1
return denoised
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
if x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
# MPS fix for randn in torchsde
def torchsde_randn(size, dtype, device, seed):
if device.type == 'mps':
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
else:
generator = torch.Generator(device).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=device, generator=generator)
torchsde._brownian.brownian_interval._randn = torchsde_randn
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.default_eta = 1.0
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def callback_state(self, d):
step = d['i']
latent = d["denoised"]
if opts.live_preview_content == "Combined":
store_latent(latent)
self.last_latent = latent
if self.stop_at is not None and step > self.stop_at:
raise InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap.step = 0
self.eta = p.eta or opts.eta_ancestral
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
extra_params_kwargs['eta'] = self.eta
return extra_params_kwargs
def get_sigmas(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
discard_next_to_last_sigma = True
p.extra_generation_params["Discard penultimate sigma"] = True
steps += 1 if discard_next_to_last_sigma else 0
if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
if discard_next_to_last_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
self.last_latent = x
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
steps = steps or p.steps
sigmas = self.get_sigmas(p, steps)
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = steps
else:
extra_params_kwargs['sigmas'] = sigmas
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples

View File

@ -1,62 +0,0 @@
from collections import namedtuple
import numpy as np
import torch
from PIL import Image
from modules import devices, processing, images, sd_vae_approx
from modules.shared import opts, state
import modules.shared as shared
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
def single_sample_to_image(sample, approximation=None):
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
class InterruptedException(BaseException):
pass

View File

@ -1,220 +0,0 @@
import math
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
import numpy as np
import torch
from modules.shared import state
from modules import sd_samplers_common, prompt_parser, shared
import modules.models.diffusion.uni_pc
samplers_data_compvis = [
sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {}),
]
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
self.is_ddim = hasattr(self.sampler, 'p_sample_ddim')
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler)
self.orig_p_sample_ddim = None
if self.is_plms:
self.orig_p_sample_ddim = self.sampler.p_sample_plms
elif self.is_ddim:
self.orig_p_sample_ddim = self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
self.sampler_noises = None
self.step = 0
self.stop_at = None
self.eta = None
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def number_of_needed_noises(self, p):
return 0
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except sd_samplers_common.InterruptedException:
return self.last_latent
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
return res
def before_sample(self, x, ts, cond, unconditional_conditioning):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
if self.stop_at is not None and self.step > self.stop_at:
raise sd_samplers_common.InterruptedException
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
uc_image_conditioning = None
if isinstance(cond, dict):
if self.conditioning_key == "crossattn-adm":
image_conditioning = cond["c_adm"]
uc_image_conditioning = unconditional_conditioning["c_adm"]
else:
image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
# for DDIM, shapes must match, we can't just process cond and uncond independently;
# filling unconditional_conditioning with repeats of the last vector to match length is
# not 100% correct but should work well enough
if unconditional_conditioning.shape[1] < cond.shape[1]:
last_vector = unconditional_conditioning[:, -1:]
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
elif unconditional_conditioning.shape[1] > cond.shape[1]:
unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x = img_orig * self.mask + self.nmask * x
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
if self.conditioning_key == "crossattn-adm":
cond = {"c_adm": image_conditioning, "c_crossattn": [cond]}
unconditional_conditioning = {"c_adm": uc_image_conditioning, "c_crossattn": [unconditional_conditioning]}
else:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
return x, ts, cond, unconditional_conditioning
def update_step(self, last_latent):
if self.mask is not None:
self.last_latent = self.init_latent * self.mask + self.nmask * last_latent
else:
self.last_latent = last_latent
sd_samplers_common.store_latent(self.last_latent)
self.step += 1
state.sampling_step = self.step
shared.total_tqdm.update()
def after_sample(self, x, ts, cond, uncond, res):
if not self.is_unipc:
self.update_step(res[1])
return x, ts, cond, uncond, res
def unipc_after_update(self, x, model_x):
self.update_step(x)
def initialize(self, p):
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
if self.eta != 0.0:
p.extra_generation_params["Eta DDIM"] = self.eta
if self.is_unipc:
keys = [
('UniPC variant', 'uni_pc_variant'),
('UniPC skip type', 'uni_pc_skip_type'),
('UniPC order', 'uni_pc_order'),
('UniPC lower order final', 'uni_pc_lower_order_final'),
]
for name, key in keys:
v = getattr(shared.opts, key)
if v != shared.opts.get_default(key):
p.extra_generation_params[name] = v
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
if self.is_unipc:
self.sampler.set_hooks(lambda x, t, c, u: self.before_sample(x, t, c, u), lambda x, t, c, u, r: self.after_sample(x, t, c, u, r), lambda x, mx: self.unipc_after_update(x, mx))
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def adjust_steps_if_invalid(self, p, num_steps):
if ((self.config.name == 'DDIM') and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS') or (self.config.name == 'UniPC'):
if self.config.name == 'UniPC' and num_steps < shared.opts.uni_pc_order:
num_steps = shared.opts.uni_pc_order
valid_step = 999 / (1000 // num_steps)
if valid_step == math.floor(valid_step):
return int(valid_step) + 1
return num_steps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
steps = self.adjust_steps_if_invalid(p, steps)
self.initialize(p)
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.init_latent = x
self.last_latent = x
self.step = 0
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
if self.conditioning_key == "crossattn-adm":
conditioning = {"c_adm": image_conditioning, "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_adm": torch.zeros_like(image_conditioning), "c_crossattn": [unconditional_conditioning]}
else:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
self.initialize(p)
self.init_latent = None
self.last_latent = x
self.step = 0
steps = self.adjust_steps_if_invalid(p, steps or p.steps)
# Wrap the conditioning models with additional image conditioning for inpainting model
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
if image_conditioning is not None:
if self.conditioning_key == "crossattn-adm":
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_adm": image_conditioning}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_adm": torch.zeros_like(image_conditioning)}
else:
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
return samples_ddim

View File

@ -1,366 +0,0 @@
from collections import deque
import torch
import inspect
import einops
import k_diffusion.sampling
from modules import prompt_parser, devices, sd_samplers_common
from modules.shared import opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {}),
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
]
samplers_data_k_diffusion = [
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
]
sampler_extra_params = {
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}
class CFGDenoiser(torch.nn.Module):
"""
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
instead of one. Originally, the second prompt is just an empty string, but we use non-empty
negative prompt.
"""
def __init__(self, model):
super().__init__()
self.inner_model = model
self.mask = None
self.nmask = None
self.init_latent = None
self.step = 0
self.image_cfg_scale = None
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
denoised = torch.clone(denoised_uncond)
for i, conds in enumerate(conds_list):
for cond_index, weight in conds:
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
return denoised
def combine_denoised_for_edit_model(self, x_out, cond_scale):
out_cond, out_img_cond, out_uncond = x_out.chunk(3)
denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
return denoised
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
# at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
# so is_edit_model is set to False to support AND composition.
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
assert not is_edit_model or all([len(conds) == 1 for conds in conds_list]), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
if shared.sd_model.model.conditioning_key == "crossattn-adm":
image_uncond = torch.zeros_like(image_cond)
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
else:
image_uncond = image_cond
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
if not is_edit_model:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
else:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
sigma_in = denoiser_params.sigma
tensor = denoiser_params.text_cond
uncond = denoiser_params.text_uncond
if tensor.shape[1] == uncond.shape[1]:
if not is_edit_model:
cond_in = torch.cat([tensor, uncond])
else:
cond_in = torch.cat([tensor, uncond, uncond])
if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict([cond_in[a:b]], image_cond_in[a:b]))
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
if not is_edit_model:
c_crossattn = [tensor[a:b]]
else:
c_crossattn = torch.cat([tensor[a:b]], uncond)
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
cfg_denoised_callback(denoised_params)
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
sd_samplers_common.store_latent(x_out[0:uncond.shape[0]])
elif opts.live_preview_content == "Negative prompt":
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
if not is_edit_model:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
else:
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.step += 1
return denoised
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
if x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def callback_state(self, d):
step = d['i']
latent = d["denoised"]
if opts.live_preview_content == "Combined":
sd_samplers_common.store_latent(latent)
self.last_latent = latent
if self.stop_at is not None and step > self.stop_at:
raise sd_samplers_common.InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except sd_samplers_common.InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
if self.eta != 1.0:
p.extra_generation_params["Eta"] = self.eta
extra_params_kwargs['eta'] = self.eta
return extra_params_kwargs
def get_sigmas(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
discard_next_to_last_sigma = True
p.extra_generation_params["Discard penultimate sigma"] = True
steps += 1 if discard_next_to_last_sigma else 0
if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
if discard_next_to_last_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def create_noise_sampler(self, x, sigmas, p):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
if shared.opts.no_dpmpp_sde_batch_determinism:
return None
from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'sigma_min' in parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in parameters:
extra_params_kwargs['sigmas'] = sigma_sched
if self.funcname == 'sample_dpmpp_sde':
noise_sampler = self.create_noise_sampler(x, sigmas, p)
extra_params_kwargs['noise_sampler'] = noise_sampler
self.model_wrap_cfg.init_latent = x
self.last_latent = x
extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
}
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps = steps or p.steps
sigmas = self.get_sigmas(p, steps)
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'sigma_min' in parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
if 'n' in parameters:
extra_params_kwargs['n'] = steps
else:
extra_params_kwargs['sigmas'] = sigmas
if self.funcname == 'sample_dpmpp_sde':
noise_sampler = self.create_noise_sampler(x, sigmas, p)
extra_params_kwargs['noise_sampler'] = noise_sampler
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples

View File

@ -3,12 +3,13 @@ import safetensors.torch
import os import os
import collections import collections
from collections import namedtuple from collections import namedtuple
from modules import paths, shared, devices, script_callbacks, sd_models from modules import shared, devices, script_callbacks, sd_models
from modules.paths import models_path
import glob import glob
from copy import deepcopy from copy import deepcopy
vae_path = os.path.abspath(os.path.join(paths.models_path, "VAE")) vae_path = os.path.abspath(os.path.join(models_path, "VAE"))
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
vae_dict = {} vae_dict = {}

View File

@ -35,11 +35,8 @@ def model():
global sd_vae_approx_model global sd_vae_approx_model
if sd_vae_approx_model is None: if sd_vae_approx_model is None:
model_path = os.path.join(paths.models_path, "VAE-approx", "model.pt")
sd_vae_approx_model = VAEApprox() sd_vae_approx_model = VAEApprox()
if not os.path.exists(model_path): sd_vae_approx_model.load_state_dict(torch.load(os.path.join(paths.models_path, "VAE-approx", "model.pt"), map_location='cpu' if devices.device.type != 'cuda' else None))
model_path = os.path.join(paths.script_path, "models", "VAE-approx", "model.pt")
sd_vae_approx_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
sd_vae_approx_model.eval() sd_vae_approx_model.eval()
sd_vae_approx_model.to(devices.device, devices.dtype) sd_vae_approx_model.to(devices.device, devices.dtype)

View File

@ -13,21 +13,101 @@ import modules.interrogate
import modules.memmon import modules.memmon
import modules.styles import modules.styles
import modules.devices as devices import modules.devices as devices
from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args from modules import localization, sd_vae, extensions, script_loading, errors, ui_components
from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir from modules.paths import models_path, script_path, sd_path
demo = None demo = None
parser = cmd_args.parser sd_default_config = os.path.join(script_path, "configs/v1-inference.yaml")
sd_model_file = os.path.join(script_path, 'model.ckpt')
default_sd_model_file = sd_model_file
script_loading.preload_extensions(extensions_dir, parser) parser = argparse.ArgumentParser()
script_loading.preload_extensions(extensions_builtin_dir, parser) parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
parser.add_argument("--vae-dir", type=str, default=None, help="Path to directory with VAE files")
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
parser.add_argument("--enable-insecure-extension-access", action='store_true', help="enable extensions tab regardless of other options")
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--xformers-flash-attention", action='store_true', help="enable xformers with Flash Attention to improve reproducibility (supported for SD2.x or variant only)")
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json'))
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything')
parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
parser.add_argument('--vae-path', type=str, help='Checkpoint to use as VAE; setting this argument disables all settings related to VAE', default=None)
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(s) in the form of a comma-separated list (no spaces)", default=None)
parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
parser.add_argument("--gradio-queue", action='store_true', help="Uses gradio queue; experimental option; breaks restart UI button")
script_loading.preload_extensions(extensions.extensions_dir, parser)
script_loading.preload_extensions(extensions.extensions_builtin_dir, parser)
if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
cmd_opts = parser.parse_args() cmd_opts = parser.parse_args()
else:
cmd_opts, _ = parser.parse_known_args()
restricted_opts = { restricted_opts = {
"samples_filename_pattern", "samples_filename_pattern",
@ -44,13 +124,12 @@ restricted_opts = {
ui_reorder_categories = [ ui_reorder_categories = [
"inpaint", "inpaint",
"sampler", "sampler",
"checkboxes",
"hires_fix",
"dimensions", "dimensions",
"cfg", "cfg",
"seed", "seed",
"checkboxes",
"hires_fix",
"batch", "batch",
"override_settings",
"scripts", "scripts",
] ]
@ -184,6 +263,12 @@ interrogator = modules.interrogate.InterrogateModels("interrogate")
face_restorers = [] face_restorers = []
def realesrgan_models_names():
import modules.realesrgan_model
return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)]
class OptionInfo: class OptionInfo:
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None): def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
self.default = default self.default = default
@ -218,7 +303,6 @@ def list_samplers():
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config} hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
tab_names = []
options_templates = {} options_templates = {}
@ -240,16 +324,10 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."), "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."), "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
"save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
"webp_lossless": OptionInfo(False, "Use lossless compression for webp images"), "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
"export_for_4chan": OptionInfo(True, "If the saved image file size is above the limit, or its either width or height are above the limit, save a downscaled copy as JPG"),
"img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
"target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
"img_max_size_mp": OptionInfo(200, "Maximum image size, in megapixels", gr.Number),
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"), "use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"), "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"), "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"), "do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
@ -271,22 +349,22 @@ options_templates.update(options_section(('saving-paths', "Paths for saving"), {
})) }))
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), { options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
"save_to_dirs": OptionInfo(True, "Save images to a subdirectory"), "save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
"grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"), "grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"), "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
"directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs), "directories_filename_pattern": OptionInfo("", "Directory name pattern", component_args=hide_dirs),
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}), "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
})) }))
options_templates.update(options_section(('upscaling', "Upscaling"), { options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
})) }))
options_templates.update(options_section(('face-restoration', "Face restoration"), { options_templates.update(options_section(('face-restoration', "Face restoration"), {
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
"code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
})) }))
@ -318,7 +396,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list), "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": ["Automatic", "None"] + list(sd_vae.vae_dict)}, refresh=sd_vae.refresh_vae_list),
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
@ -330,13 +408,12 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), "extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
})) }))
options_templates.update(options_section(('compatibility', "Compatibility"), { options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."), "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."), "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
})) }))
@ -357,21 +434,14 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
options_templates.update(options_section(('extra_networks', "Extra Networks"), { options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, { "choices": ["cards", "thumbs"] }), "extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, { "choices": ["cards", "thumbs"] }),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"),
"extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"),
"extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
})) }))
options_templates.update(options_section(('ui', "User interface"), { options_templates.update(options_section(('ui', "User interface"), {
"return_grid": OptionInfo(True, "Show grid in results for web"), "return_grid": OptionInfo(True, "Show grid in results for web"),
"return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
"return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
"disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), "disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"font": OptionInfo("", "Font for image grids that have text"), "font": OptionInfo("", "Font for image grids that have text"),
@ -383,7 +453,6 @@ options_templates.update(options_section(('ui', "User interface"), {
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"), "quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
"hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}),
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"), "ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"), "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
"localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)), "localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
@ -409,21 +478,15 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"), 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}),
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
})) }))
options_templates.update(options_section(('postprocessing', "Postprocessing"), { options_templates.update(options_section(('postprocessing', "Postprocessing"), {
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), 'postprocessing_scipts_order': OptionInfo("upscale, gfpgan, codeformer", "Postprocessing operation order"),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
})) }))
options_templates.update(options_section((None, "Hidden options"), { options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable these extensions"), "disabled_extensions": OptionInfo([], "Disable those extensions"),
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"), "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
})) }))
@ -488,15 +551,6 @@ class Options:
return True return True
def get_default(self, key):
"""returns the default value for the key"""
data_label = self.data_labels.get(key)
if data_label is None:
return None
return data_label.default
def save(self, filename): def save(self, filename):
assert not cmd_opts.freeze_settings, "saving settings is disabled" assert not cmd_opts.freeze_settings, "saving settings is disabled"
@ -551,37 +605,11 @@ class Options:
self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])} self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
def cast_value(self, key, value):
"""casts an arbitrary to the same type as this setting's value with key
Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
"""
if value is None:
return None
default_value = self.data_labels[key].default
if default_value is None:
default_value = getattr(self, key, None)
if default_value is None:
return None
expected_type = type(default_value)
if expected_type == bool and value == "False":
value = False
else:
value = expected_type(value)
return value
opts = Options() opts = Options()
if os.path.exists(config_filename): if os.path.exists(config_filename):
opts.load(config_filename) opts.load(config_filename)
settings_components = None
"""assinged from ui.py, a mapping on setting anmes to gradio components repsponsible for those settings"""
latent_upscale_default_mode = "Latent" latent_upscale_default_mode = "Latent"
latent_upscale_modes = { latent_upscale_modes = {
"Latent": {"mode": "bilinear", "antialias": False}, "Latent": {"mode": "bilinear", "antialias": False},
@ -629,7 +657,6 @@ class TotalTQDM:
def clear(self): def clear(self):
if self._tqdm is not None: if self._tqdm is not None:
self._tqdm.refresh()
self._tqdm.close() self._tqdm.close()
self._tqdm = None self._tqdm = None
@ -641,7 +668,7 @@ mem_mon.start()
def listfiles(dirname): def listfiles(dirname):
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=str.lower) if not x.startswith(".")] filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname)) if not x.startswith(".")]
return [file for file in filenames if os.path.isfile(file)] return [file for file in filenames if os.path.isfile(file)]

View File

@ -1,23 +0,0 @@
def realesrgan_models_names():
import modules.realesrgan_model
return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)]
def postprocessing_scripts():
import modules.scripts
return modules.scripts.scripts_postproc.scripts
def sd_vae_items():
import modules.sd_vae
return ["Automatic", "None"] + list(modules.sd_vae.vae_dict)
def refresh_vae_list():
import modules.sd_vae
modules.sd_vae.refresh_vae_list()

View File

@ -67,7 +67,7 @@ def _summarize_chunk(
max_score, _ = torch.max(attn_weights, -1, keepdim=True) max_score, _ = torch.max(attn_weights, -1, keepdim=True)
max_score = max_score.detach() max_score = max_score.detach()
exp_weights = torch.exp(attn_weights - max_score) exp_weights = torch.exp(attn_weights - max_score)
exp_values = torch.bmm(exp_weights, value) if query.device.type == 'mps' else torch.bmm(exp_weights, value.to(exp_weights.dtype)).to(value.dtype) exp_values = torch.bmm(exp_weights, value)
max_score = max_score.squeeze(-1) max_score = max_score.squeeze(-1)
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
@ -129,7 +129,7 @@ def _get_attention_scores_no_kv_chunking(
) )
attn_probs = attn_scores.softmax(dim=-1) attn_probs = attn_scores.softmax(dim=-1)
del attn_scores del attn_scores
hidden_states_slice = torch.bmm(attn_probs, value) if query.device.type == 'mps' else torch.bmm(attn_probs, value.to(attn_probs.dtype)).to(value.dtype) hidden_states_slice = torch.bmm(attn_probs, value)
return hidden_states_slice return hidden_states_slice

View File

@ -19,10 +19,9 @@ re_numbers_at_start = re.compile(r"^[-\d]+\s*")
class DatasetEntry: class DatasetEntry:
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None, weight=None): def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
self.filename = filename self.filename = filename
self.filename_text = filename_text self.filename_text = filename_text
self.weight = weight
self.latent_dist = latent_dist self.latent_dist = latent_dist
self.latent_sample = latent_sample self.latent_sample = latent_sample
self.cond = cond self.cond = cond
@ -31,7 +30,7 @@ class DatasetEntry:
class PersonalizedBase(Dataset): class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False): def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
self.placeholder_token = placeholder_token self.placeholder_token = placeholder_token
@ -57,16 +56,10 @@ class PersonalizedBase(Dataset):
print("Preparing dataset...") print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths): for path in tqdm.tqdm(self.image_paths):
alpha_channel = None
if shared.state.interrupted: if shared.state.interrupted:
raise Exception("interrupted") raise Exception("interrupted")
try: try:
image = Image.open(path) image = Image.open(path).convert('RGB')
#Currently does not work for single color transparency
#We would need to read image.info['transparency'] for that
if use_weight and 'A' in image.getbands():
alpha_channel = image.getchannel('A')
image = image.convert('RGB')
if not varsize: if not varsize:
image = image.resize((width, height), PIL.Image.BICUBIC) image = image.resize((width, height), PIL.Image.BICUBIC)
except Exception: except Exception:
@ -94,35 +87,17 @@ class PersonalizedBase(Dataset):
with devices.autocast(): with devices.autocast():
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0)) latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
#Perform latent sampling, even for random sampling. if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
#We need the sample dimensions for the weights latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
if latent_sampling_method == "deterministic": latent_sampling_method = "once"
if isinstance(latent_dist, DiagonalGaussianDistribution): entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
elif latent_sampling_method == "deterministic":
# Works only for DiagonalGaussianDistribution # Works only for DiagonalGaussianDistribution
latent_dist.std = 0 latent_dist.std = 0
else:
latent_sampling_method = "once"
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu) latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
if use_weight and alpha_channel is not None: elif latent_sampling_method == "random":
channels, *latent_size = latent_sample.shape entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
weight_img = alpha_channel.resize(latent_size)
npweight = np.array(weight_img).astype(np.float32)
#Repeat for every channel in the latent sample
weight = torch.tensor([npweight] * channels).reshape([channels] + latent_size)
#Normalize the weight to a minimum of 0 and a mean of 1, that way the loss will be comparable to default.
weight -= weight.min()
weight /= weight.mean()
elif use_weight:
#If an image does not have a alpha channel, add a ones weight map anyway so we can stack it later
weight = torch.ones(latent_sample.shape)
else:
weight = None
if latent_sampling_method == "random":
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight)
else:
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample, weight=weight)
if not (self.tag_drop_out != 0 or self.shuffle_tags): if not (self.tag_drop_out != 0 or self.shuffle_tags):
entry.cond_text = self.create_text(filename_text) entry.cond_text = self.create_text(filename_text)
@ -135,7 +110,6 @@ class PersonalizedBase(Dataset):
del torchdata del torchdata
del latent_dist del latent_dist
del latent_sample del latent_sample
del weight
self.length = len(self.dataset) self.length = len(self.dataset)
self.groups = list(groups.values()) self.groups = list(groups.values())
@ -221,10 +195,6 @@ class BatchLoader:
self.cond_text = [entry.cond_text for entry in data] self.cond_text = [entry.cond_text for entry in data]
self.cond = [entry.cond for entry in data] self.cond = [entry.cond for entry in data]
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1) self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
if all(entry.weight is not None for entry in data):
self.weight = torch.stack([entry.weight for entry in data]).squeeze(1)
else:
self.weight = None
#self.emb_index = [entry.emb_index for entry in data] #self.emb_index = [entry.emb_index for entry in data]
#print(self.latent_sample.device) #print(self.latent_sample.device)

View File

@ -6,7 +6,8 @@ import sys
import tqdm import tqdm
import time import time
from modules import paths, shared, images, deepbooru from modules import shared, images, deepbooru
from modules.paths import models_path
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop from modules.textual_inversion import autocrop
@ -198,7 +199,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
dnn_model_path = None dnn_model_path = None
try: try:
dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv")) dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv"))
except Exception as e: except Exception as e:
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e) print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)

View File

@ -112,7 +112,6 @@ class EmbeddingDatabase:
self.skipped_embeddings = {} self.skipped_embeddings = {}
self.expected_shape = -1 self.expected_shape = -1
self.embedding_dirs = {} self.embedding_dirs = {}
self.previously_displayed_embeddings = ()
def add_embedding_dir(self, path): def add_embedding_dir(self, path):
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
@ -152,11 +151,7 @@ class EmbeddingDatabase:
name = data.get('name', name) name = data.get('name', name)
else: else:
data = extract_image_data_embed(embed_image) data = extract_image_data_embed(embed_image)
if data:
name = data.get('name', name) name = data.get('name', name)
else:
# if data is None, means this is not an embeding, just a preview image
return
elif ext in ['.BIN', '.PT']: elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu") data = torch.load(path, map_location="cpu")
elif ext in ['.SAFETENSORS']: elif ext in ['.SAFETENSORS']:
@ -199,7 +194,7 @@ class EmbeddingDatabase:
if not os.path.isdir(embdir.path): if not os.path.isdir(embdir.path):
return return
for root, dirs, fns in os.walk(embdir.path, followlinks=True): for root, dirs, fns in os.walk(embdir.path):
for fn in fns: for fn in fns:
try: try:
fullfn = os.path.join(root, fn) fullfn = os.path.join(root, fn)
@ -233,9 +228,6 @@ class EmbeddingDatabase:
self.load_from_dir(embdir) self.load_from_dir(embdir)
embdir.update() embdir.update()
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
if self.previously_displayed_embeddings != displayed_embeddings:
self.previously_displayed_embeddings = displayed_embeddings
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if len(self.skipped_embeddings) > 0: if len(self.skipped_embeddings) > 0:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
@ -355,7 +347,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
assert log_directory, "Log directory is empty" assert log_directory, "Log directory is empty"
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
save_embedding_every = save_embedding_every or 0 save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0 create_image_every = create_image_every or 0
template_file = textual_inversion_templates.get(template_filename, None) template_file = textual_inversion_templates.get(template_filename, None)
@ -414,7 +406,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
pin_memory = shared.opts.pin_memory pin_memory = shared.opts.pin_memory
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight) ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
if shared.opts.save_training_settings_to_txt: if shared.opts.save_training_settings_to_txt:
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()}) save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
@ -484,8 +476,6 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
with devices.autocast(): with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if use_weight:
w = batch.weight.to(devices.device, non_blocking=pin_memory)
c = shared.sd_model.cond_stage_model(batch.cond_text) c = shared.sd_model.cond_stage_model(batch.cond_text)
if is_training_inpainting_model: if is_training_inpainting_model:
@ -496,11 +486,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
else: else:
cond = c cond = c
if use_weight: loss = shared.sd_model(x, cond)[0] / gradient_step
loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
del w
else:
loss = shared.sd_model.forward(x, cond)[0] / gradient_step
del x del x
_loss_step += loss.item() _loss_step += loss.item()

View File

@ -1,38 +0,0 @@
import time
class Timer:
def __init__(self):
self.start = time.time()
self.records = {}
self.total = 0
def elapsed(self):
end = time.time()
res = end - self.start
self.start = end
return res
def record(self, category, extra_time=0):
e = self.elapsed()
if category not in self.records:
self.records[category] = 0
self.records[category] += e + extra_time
self.total += e + extra_time
def summary(self):
res = f"{self.total:.1f}s"
additions = [x for x in self.records.items() if x[1] >= 0.1]
if not additions:
return res
res += " ("
res += ", ".join([f"{category}: {time_taken:.1f}s" for category, time_taken in additions])
res += ")"
return res
def reset(self):
self.__init__()

View File

@ -1,6 +1,5 @@
import modules.scripts import modules.scripts
from modules import sd_samplers from modules import sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \ from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
@ -9,9 +8,7 @@ import modules.processing as processing
from modules.ui import plaintext_to_html from modules.ui import plaintext_to_html
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, override_settings_texts, *args): def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, *args):
override_settings = create_override_settings_dict(override_settings_texts)
p = StableDiffusionProcessingTxt2Img( p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model, sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@ -41,7 +38,6 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
hr_second_pass_steps=hr_second_pass_steps, hr_second_pass_steps=hr_second_pass_steps,
hr_resize_x=hr_resize_x, hr_resize_x=hr_resize_x,
hr_resize_y=hr_resize_y, hr_resize_y=hr_resize_y,
override_settings=override_settings,
) )
p.scripts = modules.scripts.scripts_txt2img p.scripts = modules.scripts.scripts_txt2img

View File

@ -20,8 +20,8 @@ from PIL import Image, PngImagePlugin
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing
from modules.ui_components import FormRow, FormColumn, FormGroup, ToolButton, FormHTML from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path, data_path from modules.paths import script_path
from modules.shared import opts, cmd_opts, restricted_opts from modules.shared import opts, cmd_opts, restricted_opts
@ -70,6 +70,17 @@ def gr_show(visible=True):
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
css_hide_progressbar = """
.wrap .m-12 svg { display:none!important; }
.wrap .m-12::before { content:"Loading..." }
.wrap .z-20 svg { display:none!important; }
.wrap .z-20::before { content:"Loading..." }
.wrap.cover-bg .z-20::before { content:"" }
.progress-bar { display:none!important; }
.meta-text { display:none!important; }
.meta-text-center { display:none!important; }
"""
# Using constants for these since the variation selector isn't visible. # Using constants for these since the variation selector isn't visible.
# Important that they exactly match script.js for tooltip to work. # Important that they exactly match script.js for tooltip to work.
random_symbol = '\U0001f3b2\ufe0f' # 🎲️ random_symbol = '\U0001f3b2\ufe0f' # 🎲️
@ -78,9 +89,8 @@ paste_symbol = '\u2199\ufe0f' # ↙
refresh_symbol = '\U0001f504' # 🔄 refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾 save_style_symbol = '\U0001f4be' # 💾
apply_style_symbol = '\U0001f4cb' # 📋 apply_style_symbol = '\U0001f4cb' # 📋
clear_prompt_symbol = '\U0001f5d1\ufe0f' # 🗑️ clear_prompt_symbol = '\U0001F5D1' # 🗑️
extra_networks_symbol = '\U0001F3B4' # 🎴 extra_networks_symbol = '\U0001F3B4' # 🎴
switch_values_symbol = '\U000021C5' # ⇅
def plaintext_to_html(text): def plaintext_to_html(text):
@ -168,12 +178,13 @@ def interrogate_deepbooru(image):
def create_seed_inputs(target_interface): def create_seed_inputs(target_interface):
with FormRow(elem_id=target_interface + '_seed_row', variant="compact"): with FormRow(elem_id=target_interface + '_seed_row'):
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed') seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed')
seed.style(container=False) seed.style(container=False)
random_seed = ToolButton(random_symbol, elem_id=target_interface + '_random_seed') random_seed = gr.Button(random_symbol, elem_id=target_interface + '_random_seed')
reuse_seed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_seed') reuse_seed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_seed')
with gr.Group(elem_id=target_interface + '_subseed_show_box'):
seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False) seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
# Components to show/hide based on the 'Extra' checkbox # Components to show/hide based on the 'Extra' checkbox
@ -183,8 +194,8 @@ def create_seed_inputs(target_interface):
seed_extras.append(seed_extra_row_1) seed_extras.append(seed_extra_row_1)
subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed') subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed')
subseed.style(container=False) subseed.style(container=False)
random_subseed = ToolButton(random_symbol, elem_id=target_interface + '_random_subseed') random_subseed = gr.Button(random_symbol, elem_id=target_interface + '_random_subseed')
reuse_subseed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_subseed') reuse_subseed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_subseed')
subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength') subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength')
with FormRow(visible=False) as seed_extra_row_2: with FormRow(visible=False) as seed_extra_row_2:
@ -279,19 +290,19 @@ def create_toprow(is_img2img):
with gr.Row(): with gr.Row():
with gr.Column(scale=80): with gr.Column(scale=80):
with gr.Row(): with gr.Row():
negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)") negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)")
button_interrogate = None button_interrogate = None
button_deepbooru = None button_deepbooru = None
if is_img2img: if is_img2img:
with gr.Column(scale=1, elem_classes="interrogate-col"): with gr.Column(scale=1, elem_id="interrogate_col"):
button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate") button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
with gr.Column(scale=1, elem_id=f"{id_part}_actions_column"): with gr.Column(scale=1, elem_id=f"{id_part}_actions_column"):
with gr.Row(elem_id=f"{id_part}_generate_box", elem_classes="generate-box"): with gr.Row(elem_id=f"{id_part}_generate_box"):
interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt", elem_classes="generate-box-interrupt") interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt")
skip = gr.Button('Skip', elem_id=f"{id_part}_skip", elem_classes="generate-box-skip") skip = gr.Button('Skip', elem_id=f"{id_part}_skip")
submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary') submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary')
skip.click( skip.click(
@ -313,9 +324,9 @@ def create_toprow(is_img2img):
prompt_style_apply = ToolButton(value=apply_style_symbol, elem_id=f"{id_part}_style_apply") prompt_style_apply = ToolButton(value=apply_style_symbol, elem_id=f"{id_part}_style_apply")
save_style = ToolButton(value=save_style_symbol, elem_id=f"{id_part}_style_create") save_style = ToolButton(value=save_style_symbol, elem_id=f"{id_part}_style_create")
token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_token_counter", elem_classes=["token-counter"]) token_counter = gr.HTML(value="<span></span>", elem_id=f"{id_part}_token_counter")
token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
negative_token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_negative_token_counter", elem_classes=["token-counter"]) negative_token_counter = gr.HTML(value="<span></span>", elem_id=f"{id_part}_negative_token_counter")
negative_token_button = gr.Button(visible=False, elem_id=f"{id_part}_negative_token_button") negative_token_button = gr.Button(visible=False, elem_id=f"{id_part}_negative_token_button")
clear_prompt_button.click( clear_prompt_button.click(
@ -368,7 +379,6 @@ def apply_setting(key, value):
opts.save(shared.config_filename) opts.save(shared.config_filename)
return getattr(opts, key) return getattr(opts, key)
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh(): def refresh():
refresh_method() refresh_method()
@ -422,18 +432,6 @@ def get_value_for_setting(key):
return gr.update(value=value, **args) return gr.update(value=value, **args)
def create_override_settings_dropdown(tabname, row):
dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True)
dropdown.change(
fn=lambda x: gr.Dropdown.update(visible=len(x) > 0),
inputs=[dropdown],
outputs=[dropdown],
)
return dropdown
def create_ui(): def create_ui():
import modules.img2img import modules.img2img
import modules.txt2img import modules.txt2img
@ -467,9 +465,6 @@ def create_ui():
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width") width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height") height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
with gr.Column(elem_id="txt2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn")
if opts.dimensions_and_batch_together: if opts.dimensions_and_batch_together:
with gr.Column(elem_id="txt2img_column_batch"): with gr.Column(elem_id="txt2img_column_batch"):
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
@ -482,7 +477,7 @@ def create_ui():
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img') seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img')
elif category == "checkboxes": elif category == "checkboxes":
with FormRow(elem_classes="checkboxes-row", variant="compact"): with FormRow(elem_id="txt2img_checkboxes", variant="compact"):
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces")
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling")
enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr")
@ -506,10 +501,6 @@ def create_ui():
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size")
elif category == "override_settings":
with FormRow(elem_id="txt2img_override_settings_row") as row:
override_settings = create_override_settings_dropdown('txt2img', row)
elif category == "scripts": elif category == "scripts":
with FormGroup(elem_id="txt2img_script_container"): with FormGroup(elem_id="txt2img_script_container"):
custom_inputs = modules.scripts.scripts_txt2img.setup_ui() custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
@ -531,6 +522,7 @@ def create_ui():
) )
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@ -561,7 +553,6 @@ def create_ui():
hr_second_pass_steps, hr_second_pass_steps,
hr_resize_x, hr_resize_x,
hr_resize_y, hr_resize_y,
override_settings,
] + custom_inputs, ] + custom_inputs,
outputs=[ outputs=[
@ -576,8 +567,6 @@ def create_ui():
txt2img_prompt.submit(**txt2img_args) txt2img_prompt.submit(**txt2img_args)
submit.click(**txt2img_args) submit.click(**txt2img_args)
res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height], show_progress=False)
txt_prompt_img.change( txt_prompt_img.change(
fn=modules.images.image_data, fn=modules.images.image_data,
inputs=[ inputs=[
@ -621,10 +610,7 @@ def create_ui():
(hr_resize_y, "Hires resize-2"), (hr_resize_y, "Hires resize-2"),
*modules.scripts.scripts_txt2img.infotext_fields *modules.scripts.scripts_txt2img.infotext_fields
] ]
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings) parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None,
))
txt2img_preview_params = [ txt2img_preview_params = [
txt2img_prompt, txt2img_prompt,
@ -705,15 +691,9 @@ def create_ui():
with gr.TabItem('Batch', id='batch', elem_id="img2img_batch_tab") as tab_batch: with gr.TabItem('Batch', id='batch', elem_id="img2img_batch_tab") as tab_batch:
hidden = '<br>Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else '' hidden = '<br>Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
gr.HTML( gr.HTML(f"<p style='padding-bottom: 1em;' class=\"text-gray-500\">Process images in a directory on the same machine where the server is running.<br>Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}</p>")
f"<p style='padding-bottom: 1em;' class=\"text-gray-500\">Process images in a directory on the same machine where the server is running." +
f"<br>Use an empty output directory to save pictures normally instead of writing to the output directory." +
f"<br>Add inpaint batch mask directory to enable inpaint batch processing."
f"{hidden}</p>"
)
img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir") img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir")
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir") img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir")
def copy_image(img): def copy_image(img):
if isinstance(img, dict) and 'image' in img: if isinstance(img, dict) and 'image' in img:
@ -747,9 +727,6 @@ def create_ui():
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width") width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height") height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
with gr.Column(elem_id="img2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn")
if opts.dimensions_and_batch_together: if opts.dimensions_and_batch_together:
with gr.Column(elem_id="img2img_column_batch"): with gr.Column(elem_id="img2img_column_batch"):
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
@ -757,16 +734,14 @@ def create_ui():
elif category == "cfg": elif category == "cfg":
with FormGroup(): with FormGroup():
with FormRow():
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
elif category == "seed": elif category == "seed":
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img') seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img')
elif category == "checkboxes": elif category == "checkboxes":
with FormRow(elem_classes="checkboxes-row", variant="compact"): with FormRow(elem_id="img2img_checkboxes", variant="compact"):
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces") restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling") tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
@ -776,10 +751,6 @@ def create_ui():
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size")
elif category == "override_settings":
with FormRow(elem_id="img2img_override_settings_row") as row:
override_settings = create_override_settings_dropdown('img2img', row)
elif category == "scripts": elif category == "scripts":
with FormGroup(elem_id="img2img_script_container"): with FormGroup(elem_id="img2img_script_container"):
custom_inputs = modules.scripts.scripts_img2img.setup_ui() custom_inputs = modules.scripts.scripts_img2img.setup_ui()
@ -814,6 +785,7 @@ def create_ui():
) )
img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples)
parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@ -855,7 +827,6 @@ def create_ui():
batch_count, batch_count,
batch_size, batch_size,
cfg_scale, cfg_scale,
image_cfg_scale,
denoising_strength, denoising_strength,
seed, seed,
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
@ -867,8 +838,6 @@ def create_ui():
inpainting_mask_invert, inpainting_mask_invert,
img2img_batch_input_dir, img2img_batch_input_dir,
img2img_batch_output_dir, img2img_batch_output_dir,
img2img_batch_inpaint_mask_dir,
override_settings,
] + custom_inputs, ] + custom_inputs,
outputs=[ outputs=[
img2img_gallery, img2img_gallery,
@ -896,7 +865,6 @@ def create_ui():
img2img_prompt.submit(**img2img_args) img2img_prompt.submit(**img2img_args)
submit.click(**img2img_args) submit.click(**img2img_args)
res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height], show_progress=False)
img2img_interrogate.click( img2img_interrogate.click(
fn=lambda *args: process_interrogate(interrogate, *args), fn=lambda *args: process_interrogate(interrogate, *args),
@ -931,7 +899,7 @@ def create_ui():
) )
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[img2img_negative_prompt, steps], outputs=[negative_token_counter]) negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_negative_prompt, steps], outputs=[negative_token_counter])
ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery) ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery)
@ -942,7 +910,6 @@ def create_ui():
(sampler_index, "Sampler"), (sampler_index, "Sampler"),
(restore_faces, "Face restoration"), (restore_faces, "Face restoration"),
(cfg_scale, "CFG scale"), (cfg_scale, "CFG scale"),
(image_cfg_scale, "Image CFG scale"),
(seed, "Seed"), (seed, "Seed"),
(width, "Size-1"), (width, "Size-1"),
(height, "Size-2"), (height, "Size-2"),
@ -955,11 +922,8 @@ def create_ui():
(mask_blur, "Mask blur"), (mask_blur, "Mask blur"),
*modules.scripts.scripts_img2img.infotext_fields *modules.scripts.scripts_img2img.infotext_fields
] ]
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields, override_settings) parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields, override_settings) parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None,
))
modules.scripts.scripts_current = None modules.scripts.scripts_current = None
@ -977,11 +941,7 @@ def create_ui():
html2 = gr.HTML() html2 = gr.HTML()
with gr.Row(): with gr.Row():
buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"]) buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"])
parameters_copypaste.bind_buttons(buttons, image, generation_info)
for tabname, button in buttons.items():
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=button, tabname=tabname, source_text_component=generation_info, source_image_component=image,
))
image.change( image.change(
fn=wrap_gradio_call(modules.extras.run_pnginfo), fn=wrap_gradio_call(modules.extras.run_pnginfo),
@ -1183,8 +1143,6 @@ def create_ui():
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every") create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every")
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every") save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every")
use_weight = gr.Checkbox(label="Use PNG alpha channel as loss weight", value=False, elem_id="use_weight")
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding") save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding")
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img") preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img")
@ -1298,7 +1256,6 @@ def create_ui():
shuffle_tags, shuffle_tags,
tag_drop_out, tag_drop_out,
latent_sampling_method, latent_sampling_method,
use_weight,
create_image_every, create_image_every,
save_embedding_every, save_embedding_every,
template_file, template_file,
@ -1332,7 +1289,6 @@ def create_ui():
shuffle_tags, shuffle_tags,
tag_drop_out, tag_drop_out,
latent_sampling_method, latent_sampling_method,
use_weight,
create_image_every, create_image_every,
save_embedding_every, save_embedding_every,
template_file, template_file,
@ -1394,7 +1350,6 @@ def create_ui():
components = [] components = []
component_dict = {} component_dict = {}
shared.settings_components = component_dict
script_callbacks.ui_settings_callback() script_callbacks.ui_settings_callback()
opts.reorder() opts.reorder()
@ -1483,34 +1438,12 @@ def create_ui():
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications") request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
download_localization = gr.Button(value='Download localization template', elem_id="download_localization") download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies") reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies")
with gr.Row():
unload_sd_model = gr.Button(value='Unload SD checkpoint to free VRAM', elem_id="sett_unload_sd_model")
reload_sd_model = gr.Button(value='Reload the last SD checkpoint back into VRAM', elem_id="sett_reload_sd_model")
with gr.TabItem("Licenses"): with gr.TabItem("Licenses"):
gr.HTML(shared.html("licenses.html"), elem_id="licenses") gr.HTML(shared.html("licenses.html"), elem_id="licenses")
gr.Button(value="Show all pages", elem_id="settings_show_all_pages") gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
def unload_sd_weights():
modules.sd_models.unload_model_weights()
def reload_sd_weights():
modules.sd_models.reload_model_weights()
unload_sd_model.click(
fn=unload_sd_weights,
inputs=[],
outputs=[]
)
reload_sd_model.click(
fn=reload_sd_weights,
inputs=[],
outputs=[]
)
request_notifications.click( request_notifications.click(
fn=lambda: None, fn=lambda: None,
inputs=[], inputs=[],
@ -1555,28 +1488,39 @@ def create_ui():
(train_interface, "Train", "ti"), (train_interface, "Train", "ti"),
] ]
css = ""
for cssfile in modules.scripts.list_files_with_name("style.css"):
if not os.path.isfile(cssfile):
continue
with open(cssfile, "r", encoding="utf8") as file:
css += file.read() + "\n"
if os.path.exists(os.path.join(script_path, "user.css")):
with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file:
css += file.read() + "\n"
if not cmd_opts.no_progressbar_hiding:
css += css_hide_progressbar
interfaces += script_callbacks.ui_tabs_callback() interfaces += script_callbacks.ui_tabs_callback()
interfaces += [(settings_interface, "Settings", "settings")] interfaces += [(settings_interface, "Settings", "settings")]
extensions_interface = ui_extensions.create_ui() extensions_interface = ui_extensions.create_ui()
interfaces += [(extensions_interface, "Extensions", "extensions")] interfaces += [(extensions_interface, "Extensions", "extensions")]
shared.tab_names = [] with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo:
for _interface, label, _ifid in interfaces:
shared.tab_names.append(label)
with gr.Blocks(analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Row(elem_id="quicksettings", variant="compact"): with gr.Row(elem_id="quicksettings", variant="compact"):
for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
component = create_setting_component(k, is_quicksettings=True) component = create_setting_component(k, is_quicksettings=True)
component_dict[k] = component component_dict[k] = component
parameters_copypaste.connect_paste_params_buttons() parameters_copypaste.integrate_settings_paste_fields(component_dict)
parameters_copypaste.run_bind()
with gr.Tabs(elem_id="tabs") as tabs: with gr.Tabs(elem_id="tabs") as tabs:
for interface, label, ifid in interfaces: for interface, label, ifid in interfaces:
if label in shared.opts.hidden_tabs:
continue
with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid): with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid):
interface.render() interface.render()
@ -1596,27 +1540,11 @@ def create_ui():
for i, k, item in quicksettings_list: for i, k, item in quicksettings_list:
component = component_dict[k] component = component_dict[k]
info = opts.data_labels[k]
component.change( component.change(
fn=lambda value, k=k: run_settings_single(value, key=k), fn=lambda value, k=k: run_settings_single(value, key=k),
inputs=[component], inputs=[component],
outputs=[component, text_settings], outputs=[component, text_settings],
show_progress=info.refresh is not None,
)
text_settings.change(
fn=lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit"),
inputs=[],
outputs=[image_cfg_scale],
)
button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False)
button_set_checkpoint.click(
fn=lambda value, _: run_settings_single(value, key='sd_model_checkpoint'),
_js="function(v){ var res = desiredCheckpointName; desiredCheckpointName = ''; return [res || v, null]; }",
inputs=[component_dict['sd_model_checkpoint'], dummy_component],
outputs=[component_dict['sd_model_checkpoint'], text_settings],
) )
component_keys = [k for k in opts.data_labels.keys() if k in component_dict] component_keys = [k for k in opts.data_labels.keys() if k in component_dict]
@ -1628,7 +1556,6 @@ def create_ui():
fn=get_settings_values, fn=get_settings_values,
inputs=[], inputs=[],
outputs=[component_dict[k] for k in component_keys], outputs=[component_dict[k] for k in component_keys],
queue=False,
) )
def modelmerger(*args): def modelmerger(*args):
@ -1751,60 +1678,21 @@ def create_ui():
return demo return demo
def webpath(fn): def reload_javascript():
if fn.startswith(script_path): head = f'<script type="text/javascript" src="file={os.path.abspath("script.js")}"></script>\n'
web_path = os.path.relpath(fn, script_path).replace('\\', '/')
else:
web_path = os.path.abspath(fn)
return f'file={web_path}?{os.path.getmtime(fn)}'
def javascript_html():
script_js = os.path.join(script_path, "script.js")
head = f'<script type="text/javascript" src="{webpath(script_js)}"></script>\n'
inline = f"{localization.localization_js(shared.opts.localization)};" inline = f"{localization.localization_js(shared.opts.localization)};"
if cmd_opts.theme is not None: if cmd_opts.theme is not None:
inline += f"set_theme('{cmd_opts.theme}');" inline += f"set_theme('{cmd_opts.theme}');"
for script in modules.scripts.list_scripts("javascript", ".js"): for script in modules.scripts.list_scripts("javascript", ".js"):
head += f'<script type="text/javascript" src="{webpath(script.path)}"></script>\n' head += f'<script type="text/javascript" src="file={script.path}"></script>\n'
for script in modules.scripts.list_scripts("javascript", ".mjs"):
head += f'<script type="module" src="{webpath(script.path)}"></script>\n'
head += f'<script type="text/javascript">{inline}</script>\n' head += f'<script type="text/javascript">{inline}</script>\n'
return head
def css_html():
head = ""
def stylesheet(fn):
return f'<link rel="stylesheet" property="stylesheet" href="{webpath(fn)}">'
for cssfile in modules.scripts.list_files_with_name("style.css"):
if not os.path.isfile(cssfile):
continue
head += stylesheet(cssfile)
if os.path.exists(os.path.join(data_path, "user.css")):
head += stylesheet(os.path.join(data_path, "user.css"))
return head
def reload_javascript():
js = javascript_html()
css = css_html()
def template_response(*args, **kwargs): def template_response(*args, **kwargs):
res = shared.GradioTemplateResponseOriginal(*args, **kwargs) res = shared.GradioTemplateResponseOriginal(*args, **kwargs)
res.body = res.body.replace(b'</head>', f'{js}</head>'.encode("utf8")) res.body = res.body.replace(b'</head>', f'{head}</head>'.encode("utf8"))
res.body = res.body.replace(b'</body>', f'{css}</body>'.encode("utf8"))
res.init_headers() res.init_headers()
return res return res
@ -1832,7 +1720,7 @@ def versions_html():
return f""" return f"""
python: <span title="{sys.version}">{python_version}</span> python: <span title="{sys.version}">{python_version}</span>
     
torch: {getattr(torch, '__long_version__',torch.__version__)} torch: {torch.__version__}
     
xformers: {xformers_version} xformers: {xformers_version}
     

View File

@ -129,8 +129,8 @@ Requested path was: {f}
generation_info = None generation_info = None
with gr.Column(): with gr.Column():
with gr.Row(elem_id=f"image_buttons_{tabname}", elem_classes="image-buttons"): with gr.Row(elem_id=f"image_buttons_{tabname}"):
open_folder_button = gr.Button(folder_symbol, visible=not shared.cmd_opts.hide_ui_dir_config) open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}')
if tabname != "extras": if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}') save = gr.Button('Save', elem_id=f'save_{tabname}')
@ -145,10 +145,11 @@ Requested path was: {f}
) )
if tabname != "extras": if tabname != "extras":
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}') download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group(): with gr.Group():
html_info = gr.HTML(elem_id=f'html_info_{tabname}', elem_classes="infotext") html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}') html_log = gr.HTML(elem_id=f'html_log_{tabname}')
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}') generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
@ -159,7 +160,6 @@ Requested path was: {f}
_js="function(x, y, z){ return [x, y, selected_gallery_index()] }", _js="function(x, y, z){ return [x, y, selected_gallery_index()] }",
inputs=[generation_info, html_info, html_info], inputs=[generation_info, html_info, html_info],
outputs=[html_info, html_info], outputs=[html_info, html_info],
show_progress=False,
) )
save.click( save.click(
@ -195,19 +195,8 @@ Requested path was: {f}
else: else:
html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}') html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}')
html_info = gr.HTML(elem_id=f'html_info_{tabname}', elem_classes="infotext") html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}') html_log = gr.HTML(elem_id=f'html_log_{tabname}')
paste_field_names = [] parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
if tabname == "txt2img":
paste_field_names = modules.scripts.scripts_txt2img.paste_field_names
elif tabname == "img2img":
paste_field_names = modules.scripts.scripts_img2img.paste_field_names
for paste_tabname, paste_button in buttons.items():
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=paste_button, tabname=paste_tabname, source_tabname="txt2img" if tabname == "txt2img" else None, source_image_component=result_gallery,
paste_field_names=paste_field_names
))
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log

View File

@ -1,64 +1,50 @@
import gradio as gr import gradio as gr
class FormComponent: class ToolButton(gr.Button, gr.components.FormComponent):
def get_expected_parent(self):
return gr.components.Form
gr.Dropdown.get_expected_parent = FormComponent.get_expected_parent
class ToolButton(FormComponent, gr.Button):
"""Small button with single emoji as text, fits inside gradio forms""" """Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, *args, **kwargs): def __init__(self, **kwargs):
classes = kwargs.pop("elem_classes", []) super().__init__(variant="tool", **kwargs)
super().__init__(*args, elem_classes=["tool", *classes], **kwargs)
def get_block_name(self): def get_block_name(self):
return "button" return "button"
class FormRow(FormComponent, gr.Row): class ToolButtonTop(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, with extra margin at top, fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(variant="tool-top", **kwargs)
def get_block_name(self):
return "button"
class FormRow(gr.Row, gr.components.FormComponent):
"""Same as gr.Row but fits inside gradio forms""" """Same as gr.Row but fits inside gradio forms"""
def get_block_name(self): def get_block_name(self):
return "row" return "row"
class FormColumn(FormComponent, gr.Column): class FormGroup(gr.Group, gr.components.FormComponent):
"""Same as gr.Column but fits inside gradio forms"""
def get_block_name(self):
return "column"
class FormGroup(FormComponent, gr.Group):
"""Same as gr.Row but fits inside gradio forms""" """Same as gr.Row but fits inside gradio forms"""
def get_block_name(self): def get_block_name(self):
return "group" return "group"
class FormHTML(FormComponent, gr.HTML): class FormHTML(gr.HTML, gr.components.FormComponent):
"""Same as gr.HTML but fits inside gradio forms""" """Same as gr.HTML but fits inside gradio forms"""
def get_block_name(self): def get_block_name(self):
return "html" return "html"
class FormColorPicker(FormComponent, gr.ColorPicker): class FormColorPicker(gr.ColorPicker, gr.components.FormComponent):
"""Same as gr.ColorPicker but fits inside gradio forms""" """Same as gr.ColorPicker but fits inside gradio forms"""
def get_block_name(self): def get_block_name(self):
return "colorpicker" return "colorpicker"
class DropdownMulti(FormComponent, gr.Dropdown):
"""Same as gr.Dropdown but always multiselect"""
def __init__(self, **kwargs):
super().__init__(multiselect=True, **kwargs)
def get_block_name(self):
return "dropdown"

View File

@ -1,5 +1,6 @@
import json import json
import os.path import os.path
import shutil
import sys import sys
import time import time
import traceback import traceback
@ -12,7 +13,7 @@ import shutil
import errno import errno
from modules import extensions, shared, paths from modules import extensions, shared, paths
from modules.call_queue import wrap_gradio_gpu_call
available_extensions = {"extensions": []} available_extensions = {"extensions": []}
@ -21,7 +22,7 @@ def check_access():
assert not shared.cmd_opts.disable_extension_access, "extension access disabled because of command line flags" assert not shared.cmd_opts.disable_extension_access, "extension access disabled because of command line flags"
def apply_and_restart(disable_list, update_list, disable_all): def apply_and_restart(disable_list, update_list):
check_access() check_access()
disabled = json.loads(disable_list) disabled = json.loads(disable_list)
@ -43,37 +44,26 @@ def apply_and_restart(disable_list, update_list, disable_all):
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
shared.opts.disabled_extensions = disabled shared.opts.disabled_extensions = disabled
shared.opts.disable_all_extensions = disable_all
shared.opts.save(shared.config_filename) shared.opts.save(shared.config_filename)
shared.state.interrupt() shared.state.interrupt()
shared.state.need_restart = True shared.state.need_restart = True
def check_updates(id_task, disable_list): def check_updates():
check_access() check_access()
disabled = json.loads(disable_list) for ext in extensions.extensions:
assert type(disabled) == list, f"wrong disable_list data for apply_and_restart: {disable_list}" if ext.remote is None:
continue
exts = [ext for ext in extensions.extensions if ext.remote is not None and ext.name not in disabled]
shared.state.job_count = len(exts)
for ext in exts:
shared.state.textinfo = ext.name
try: try:
ext.check_updates() ext.check_updates()
except FileNotFoundError as e:
if 'FETCH_HEAD' not in str(e):
raise
except Exception: except Exception:
print(f"Error checking updates for {ext.name}:", file=sys.stderr) print(f"Error checking updates for {ext.name}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
shared.state.nextjob() return extension_table()
return extension_table(), ""
def extension_table(): def extension_table():
@ -83,7 +73,6 @@ def extension_table():
<tr> <tr>
<th><abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr></th> <th><abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr></th>
<th>URL</th> <th>URL</th>
<th><abbr title="Extension version">Version</abbr></th>
<th><abbr title="Use checkbox to mark the extension for update; it will be updated when you click apply button">Update</abbr></th> <th><abbr title="Use checkbox to mark the extension for update; it will be updated when you click apply button">Update</abbr></th>
</tr> </tr>
</thead> </thead>
@ -91,8 +80,10 @@ def extension_table():
""" """
for ext in extensions.extensions: for ext in extensions.extensions:
ext.read_info_from_repo() remote = ""
if ext.is_builtin:
remote = "built-in"
elif ext.remote:
remote = f"""<a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape("built-in" if ext.is_builtin else ext.remote or '')}</a>""" remote = f"""<a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape("built-in" if ext.is_builtin else ext.remote or '')}</a>"""
if ext.can_update: if ext.can_update:
@ -100,15 +91,10 @@ def extension_table():
else: else:
ext_status = ext.status ext_status = ext.status
style = ""
if shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.opts.disable_all_extensions == "all":
style = ' style="color: var(--primary-400)"'
code += f""" code += f"""
<tr> <tr>
<td><label{style}><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td> <td><label><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
<td>{remote}</td> <td>{remote}</td>
<td>{ext.version}</td>
<td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td> <td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td>
</tr> </tr>
""" """
@ -146,24 +132,26 @@ def install_extension_from_url(dirname, url):
normalized_url = normalize_git_url(url) normalized_url = normalize_git_url(url)
assert len([x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url]) == 0, 'Extension with this URL is already installed' assert len([x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url]) == 0, 'Extension with this URL is already installed'
tmpdir = os.path.join(paths.data_path, "tmp", dirname) tmpdir = os.path.join(paths.script_path, "tmp", dirname)
try: try:
shutil.rmtree(tmpdir, True) shutil.rmtree(tmpdir, True)
with git.Repo.clone_from(url, tmpdir) as repo:
repo = git.Repo.clone_from(url, tmpdir)
repo.remote().fetch() repo.remote().fetch()
for submodule in repo.submodules:
submodule.update()
try: try:
os.rename(tmpdir, target_dir) os.rename(tmpdir, target_dir)
except OSError as err: except OSError as err:
# TODO what does this do on windows? I think it'll be a different error code but I don't have a system to check it
# Shouldn't cause any new issues at least but we probably want to handle it there too.
if err.errno == errno.EXDEV: if err.errno == errno.EXDEV:
# Cross device link, typical in docker or when tmp/ and extensions/ are on different file systems # Cross device link, typical in docker or when tmp/ and extensions/ are on different file systems
# Since we can't use a rename, do the slower but more versitile shutil.move() # Since we can't use a rename, do the slower but more versitile shutil.move()
shutil.move(tmpdir, target_dir) shutil.move(tmpdir, target_dir)
else: else:
# Something else, not enough free space, permissions, etc. rethrow it so that it gets handled. # Something else, not enough free space, permissions, etc. rethrow it so that it gets handled.
raise err raise(err)
import launch import launch
launch.run_extension_installer(target_dir) launch.run_extension_installer(target_dir)
@ -174,12 +162,12 @@ def install_extension_from_url(dirname, url):
shutil.rmtree(tmpdir, True) shutil.rmtree(tmpdir, True)
def install_extension_from_index(url, hide_tags, sort_column, filter_text): def install_extension_from_index(url, hide_tags, sort_column):
ext_table, message = install_extension_from_url(None, url) ext_table, message = install_extension_from_url(None, url)
code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text) code, _ = refresh_available_extensions_from_data(hide_tags, sort_column)
return code, ext_table, message, '' return code, ext_table, message
def refresh_available_extensions(url, hide_tags, sort_column): def refresh_available_extensions(url, hide_tags, sort_column):
@ -193,17 +181,11 @@ def refresh_available_extensions(url, hide_tags, sort_column):
code, tags = refresh_available_extensions_from_data(hide_tags, sort_column) code, tags = refresh_available_extensions_from_data(hide_tags, sort_column)
return url, code, gr.CheckboxGroup.update(choices=tags), '', '' return url, code, gr.CheckboxGroup.update(choices=tags), ''
def refresh_available_extensions_for_tags(hide_tags, sort_column, filter_text): def refresh_available_extensions_for_tags(hide_tags, sort_column):
code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text) code, _ = refresh_available_extensions_from_data(hide_tags, sort_column)
return code, ''
def search_extensions(filter_text, hide_tags, sort_column):
code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text)
return code, '' return code, ''
@ -218,7 +200,7 @@ sort_ordering = [
] ]
def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=""): def refresh_available_extensions_from_data(hide_tags, sort_column):
extlist = available_extensions["extensions"] extlist = available_extensions["extensions"]
installed_extension_urls = {normalize_git_url(extension.remote): extension.name for extension in extensions.extensions} installed_extension_urls = {normalize_git_url(extension.remote): extension.name for extension in extensions.extensions}
@ -257,12 +239,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
hidden += 1 hidden += 1
continue continue
if filter_text and filter_text.strip(): install_code = f"""<input onclick="install_extension_from_index(this, '{html.escape(url)}')" type="button" value="{"Install" if not existing else "Installed"}" {"disabled=disabled" if existing else ""} class="gr-button gr-button-lg gr-button-secondary">"""
if filter_text.lower() not in html.escape(name).lower() and filter_text.lower() not in html.escape(description).lower():
hidden += 1
continue
install_code = f"""<button onclick="install_extension_from_index(this, '{html.escape(url)}')" {"disabled=disabled" if existing else ""} class="lg secondary gradio-button custom-button">{"Install" if not existing else "Installed"}</button>"""
tags_text = ", ".join([f"<span class='extension-tag' title='{tags.get(x, '')}'>{x}</span>" for x in extension_tags]) tags_text = ", ".join([f"<span class='extension-tag' title='{tags.get(x, '')}'>{x}</span>" for x in extension_tags])
@ -296,41 +273,32 @@ def create_ui():
with gr.Tabs(elem_id="tabs_extensions") as tabs: with gr.Tabs(elem_id="tabs_extensions") as tabs:
with gr.TabItem("Installed"): with gr.TabItem("Installed"):
with gr.Row(elem_id="extensions_installed_top"): with gr.Row():
apply = gr.Button(value="Apply and restart UI", variant="primary") apply = gr.Button(value="Apply and restart UI", variant="primary")
check = gr.Button(value="Check for updates") check = gr.Button(value="Check for updates")
extensions_disable_all = gr.Radio(label="Disable all extensions", choices=["none", "extra", "all"], value=shared.opts.disable_all_extensions, elem_id="extensions_disable_all")
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False) extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False)
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False) extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False)
html = ""
if shared.opts.disable_all_extensions != "none":
html = """
<span style="color: var(--primary-400);">
"Disable all extensions" was set, change it to "none" to load all extensions again
</span>
"""
info = gr.HTML(html)
extensions_table = gr.HTML(lambda: extension_table()) extensions_table = gr.HTML(lambda: extension_table())
apply.click( apply.click(
fn=apply_and_restart, fn=apply_and_restart,
_js="extensions_apply", _js="extensions_apply",
inputs=[extensions_disabled_list, extensions_update_list, extensions_disable_all], inputs=[extensions_disabled_list, extensions_update_list],
outputs=[], outputs=[],
) )
check.click( check.click(
fn=wrap_gradio_gpu_call(check_updates, extra_outputs=[gr.update()]), fn=check_updates,
_js="extensions_check", _js="extensions_check",
inputs=[info, extensions_disabled_list], inputs=[],
outputs=[extensions_table, info], outputs=[extensions_table],
) )
with gr.TabItem("Available"): with gr.TabItem("Available"):
with gr.Row(): with gr.Row():
refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary") refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary")
available_extensions_index = gr.Text(value="https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json", label="Extension index URL").style(container=False) available_extensions_index = gr.Text(value="https://raw.githubusercontent.com/wiki/AUTOMATIC1111/stable-diffusion-webui/Extensions-index.md", label="Extension index URL").style(container=False)
extension_to_install = gr.Text(elem_id="extension_to_install", visible=False) extension_to_install = gr.Text(elem_id="extension_to_install", visible=False)
install_extension_button = gr.Button(elem_id="install_extension_button", visible=False) install_extension_button = gr.Button(elem_id="install_extension_button", visible=False)
@ -338,39 +306,30 @@ def create_ui():
hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"]) hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"])
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index") sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index")
with gr.Row():
search_extensions_text = gr.Text(label="Search").style(container=False)
install_result = gr.HTML() install_result = gr.HTML()
available_extensions_table = gr.HTML() available_extensions_table = gr.HTML()
refresh_available_extensions_button.click( refresh_available_extensions_button.click(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions, extra_outputs=[gr.update(), gr.update(), gr.update()]), fn=modules.ui.wrap_gradio_call(refresh_available_extensions, extra_outputs=[gr.update(), gr.update(), gr.update()]),
inputs=[available_extensions_index, hide_tags, sort_column], inputs=[available_extensions_index, hide_tags, sort_column],
outputs=[available_extensions_index, available_extensions_table, hide_tags, install_result, search_extensions_text], outputs=[available_extensions_index, available_extensions_table, hide_tags, install_result],
) )
install_extension_button.click( install_extension_button.click(
fn=modules.ui.wrap_gradio_call(install_extension_from_index, extra_outputs=[gr.update(), gr.update()]), fn=modules.ui.wrap_gradio_call(install_extension_from_index, extra_outputs=[gr.update(), gr.update()]),
inputs=[extension_to_install, hide_tags, sort_column, search_extensions_text], inputs=[extension_to_install, hide_tags, sort_column],
outputs=[available_extensions_table, extensions_table, install_result], outputs=[available_extensions_table, extensions_table, install_result],
) )
search_extensions_text.change(
fn=modules.ui.wrap_gradio_call(search_extensions, extra_outputs=[gr.update()]),
inputs=[search_extensions_text, hide_tags, sort_column],
outputs=[available_extensions_table, install_result],
)
hide_tags.change( hide_tags.change(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]), fn=modules.ui.wrap_gradio_call(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
inputs=[hide_tags, sort_column, search_extensions_text], inputs=[hide_tags, sort_column],
outputs=[available_extensions_table, install_result] outputs=[available_extensions_table, install_result]
) )
sort_column.change( sort_column.change(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]), fn=modules.ui.wrap_gradio_call(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
inputs=[hide_tags, sort_column, search_extensions_text], inputs=[hide_tags, sort_column],
outputs=[available_extensions_table, install_result] outputs=[available_extensions_table, install_result]
) )

View File

@ -1,11 +1,6 @@
import glob
import os.path import os.path
import urllib.parse
from pathlib import Path
from PIL import PngImagePlugin
from modules import shared from modules import shared
from modules.images import read_info_from_image
import gradio as gr import gradio as gr
import json import json
import html import html
@ -13,48 +8,12 @@ import html
from modules.generation_parameters_copypaste import image_from_url_text from modules.generation_parameters_copypaste import image_from_url_text
extra_pages = [] extra_pages = []
allowed_dirs = set()
def register_page(page): def register_page(page):
"""registers extra networks page for the UI; recommend doing it in on_before_ui() callback for extensions""" """registers extra networks page for the UI; recommend doing it in on_before_ui() callback for extensions"""
extra_pages.append(page) extra_pages.append(page)
allowed_dirs.clear()
allowed_dirs.update(set(sum([x.allowed_directories_for_previews() for x in extra_pages], [])))
def fetch_file(filename: str = ""):
from starlette.responses import FileResponse
if not any([Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs]):
raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
ext = os.path.splitext(filename)[1].lower()
if ext not in (".png", ".jpg", ".webp"):
raise ValueError(f"File cannot be fetched: {filename}. Only png and jpg and webp.")
# would profit from returning 304
return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
def get_metadata(page: str = "", item: str = ""):
from starlette.responses import JSONResponse
page = next(iter([x for x in extra_pages if x.name == page]), None)
if page is None:
return JSONResponse({})
metadata = page.metadata.get(item)
if metadata is None:
return JSONResponse({})
return JSONResponse({"metadata": metadata})
def add_pages_to_demo(app):
app.add_api_route("/sd_extra_networks/thumb", fetch_file, methods=["GET"])
app.add_api_route("/sd_extra_networks/metadata", get_metadata, methods=["GET"])
class ExtraNetworksPage: class ExtraNetworksPage:
@ -63,73 +22,23 @@ class ExtraNetworksPage:
self.name = title.lower() self.name = title.lower()
self.card_page = shared.html("extra-networks-card.html") self.card_page = shared.html("extra-networks-card.html")
self.allow_negative_prompt = False self.allow_negative_prompt = False
self.metadata = {}
def refresh(self): def refresh(self):
pass pass
def link_preview(self, filename):
return "./sd_extra_networks/thumb?filename=" + urllib.parse.quote(filename.replace('\\', '/')) + "&mtime=" + str(os.path.getmtime(filename))
def search_terms_from_path(self, filename, possible_directories=None):
abspath = os.path.abspath(filename)
for parentdir in (possible_directories if possible_directories is not None else self.allowed_directories_for_previews()):
parentdir = os.path.abspath(parentdir)
if abspath.startswith(parentdir):
return abspath[len(parentdir):].replace('\\', '/')
return ""
def create_html(self, tabname): def create_html(self, tabname):
view = shared.opts.extra_networks_default_view view = shared.opts.extra_networks_default_view
items_html = '' items_html = ''
self.metadata = {}
subdirs = {}
for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]:
for x in glob.glob(os.path.join(parentdir, '**/*'), recursive=True):
if not os.path.isdir(x):
continue
subdir = os.path.abspath(x)[len(parentdir):].replace("\\", "/")
while subdir.startswith("/"):
subdir = subdir[1:]
is_empty = len(os.listdir(x)) == 0
if not is_empty and not subdir.endswith("/"):
subdir = subdir + "/"
subdirs[subdir] = 1
if subdirs:
subdirs = {"": 1, **subdirs}
subdirs_html = "".join([f"""
<button class='lg secondary gradio-button custom-button{" search-all" if subdir=="" else ""}' onclick='extraNetworksSearchButton("{tabname}_extra_tabs", event)'>
{html.escape(subdir if subdir!="" else "all")}
</button>
""" for subdir in subdirs])
for item in self.list_items(): for item in self.list_items():
metadata = item.get("metadata")
if metadata:
self.metadata[item["name"]] = metadata
items_html += self.create_html_for_item(item, tabname) items_html += self.create_html_for_item(item, tabname)
if items_html == '': if items_html == '':
dirs = "".join([f"<li>{x}</li>" for x in self.allowed_directories_for_previews()]) dirs = "".join([f"<li>{x}</li>" for x in self.allowed_directories_for_previews()])
items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs) items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs)
self_name_id = self.name.replace(" ", "_")
res = f""" res = f"""
<div id='{tabname}_{self_name_id}_subdirs' class='extra-network-subdirs extra-network-subdirs-{view}'> <div id='{tabname}_{self.name}_cards' class='extra-network-{view}'>
{subdirs_html}
</div>
<div id='{tabname}_{self_name_id}_cards' class='extra-network-{view}'>
{items_html} {items_html}
</div> </div>
""" """
@ -145,62 +54,18 @@ class ExtraNetworksPage:
def create_html_for_item(self, item, tabname): def create_html_for_item(self, item, tabname):
preview = item.get("preview", None) preview = item.get("preview", None)
onclick = item.get("onclick", None)
if onclick is None:
onclick = '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"'
height = f"height: {shared.opts.extra_networks_card_height}px;" if shared.opts.extra_networks_card_height else ''
width = f"width: {shared.opts.extra_networks_card_width}px;" if shared.opts.extra_networks_card_width else ''
background_image = f"background-image: url(\"{html.escape(preview)}\");" if preview else ''
metadata_button = ""
metadata = item.get("metadata")
if metadata:
metadata_button = f"<div class='metadata-button' title='Show metadata' onclick='extraNetworksRequestMetadata(event, {json.dumps(self.name)}, {json.dumps(item['name'])})'></div>"
args = { args = {
"style": f"'{height}{width}{background_image}'", "preview_html": "style='background-image: url(\"" + html.escape(preview) + "\")'" if preview else '',
"prompt": item.get("prompt", None), "prompt": item["prompt"],
"tabname": json.dumps(tabname), "tabname": json.dumps(tabname),
"local_preview": json.dumps(item["local_preview"]), "local_preview": json.dumps(item["local_preview"]),
"name": item["name"], "name": item["name"],
"description": (item.get("description") or ""), "card_clicked": '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"',
"card_clicked": onclick,
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"', "save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"',
"search_term": item.get("search_term", ""),
"metadata_button": metadata_button,
} }
return self.card_page.format(**args) return self.card_page.format(**args)
def find_preview(self, path):
"""
Find a preview PNG for a given path (without extension) and call link_preview on it.
"""
preview_extensions = ["png", "jpg", "webp"]
if shared.opts.samples_format not in preview_extensions:
preview_extensions.append(shared.opts.samples_format)
potential_files = sum([[path + "." + ext, path + ".preview." + ext] for ext in preview_extensions], [])
for file in potential_files:
if os.path.isfile(file):
return self.link_preview(file)
return None
def find_description(self, path):
"""
Find and read a description file for a given path (without extension).
"""
for file in [f"{path}.txt", f"{path}.description.txt"]:
try:
with open(file, "r", encoding="utf-8", errors="replace") as f:
return f.read()
except OSError:
pass
return None
def intialize(): def intialize():
extra_pages.clear() extra_pages.clear()
@ -242,22 +107,18 @@ def create_ui(container, button, tabname):
with gr.Tabs(elem_id=tabname+"_extra_tabs") as tabs: with gr.Tabs(elem_id=tabname+"_extra_tabs") as tabs:
for page in ui.stored_extra_pages: for page in ui.stored_extra_pages:
with gr.Tab(page.title): with gr.Tab(page.title):
page_elem = gr.HTML(page.create_html(ui.tabname)) page_elem = gr.HTML(page.create_html(ui.tabname))
ui.pages.append(page_elem) ui.pages.append(page_elem)
filter = gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False) filter = gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False)
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh") button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh")
button_close = gr.Button('Close', elem_id=tabname+"_extra_close")
ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False) ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False)
ui.preview_target_filename = gr.Textbox('Preview save filename', elem_id=tabname+"_preview_filename", visible=False) ui.preview_target_filename = gr.Textbox('Preview save filename', elem_id=tabname+"_preview_filename", visible=False)
def toggle_visibility(is_visible): button.click(fn=lambda: gr.update(visible=True), inputs=[], outputs=[container])
is_visible = not is_visible button_close.click(fn=lambda: gr.update(visible=False), inputs=[], outputs=[container])
return is_visible, gr.update(visible=is_visible), gr.update(variant=("secondary-down" if is_visible else "secondary"))
state_visible = gr.State(value=False)
button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container, button])
def refresh(): def refresh():
res = [] res = []
@ -277,7 +138,7 @@ def path_is_parent(parent_path, child_path):
parent_path = os.path.abspath(parent_path) parent_path = os.path.abspath(parent_path)
child_path = os.path.abspath(child_path) child_path = os.path.abspath(child_path)
return child_path.startswith(parent_path) return os.path.commonpath([parent_path]) == os.path.commonpath([parent_path, child_path])
def setup_ui(ui, gallery): def setup_ui(ui, gallery):
@ -292,7 +153,6 @@ def setup_ui(ui, gallery):
img_info = images[index if index >= 0 else 0] img_info = images[index if index >= 0 else 0]
image = image_from_url_text(img_info) image = image_from_url_text(img_info)
geninfo, items = read_info_from_image(image)
is_allowed = False is_allowed = False
for extra_page in ui.stored_extra_pages: for extra_page in ui.stored_extra_pages:
@ -302,19 +162,13 @@ def setup_ui(ui, gallery):
assert is_allowed, f'writing to {filename} is not allowed' assert is_allowed, f'writing to {filename} is not allowed'
if geninfo:
pnginfo_data = PngImagePlugin.PngInfo()
pnginfo_data.add_text('parameters', geninfo)
image.save(filename, pnginfo=pnginfo_data)
else:
image.save(filename) image.save(filename)
return [page.create_html(ui.tabname) for page in ui.stored_extra_pages] return [page.create_html(ui.tabname) for page in ui.stored_extra_pages]
ui.button_save_preview.click( ui.button_save_preview.click(
fn=save_preview, fn=save_preview,
_js="function(x, y, z){return [selected_gallery_index(), y, z]}", _js="function(x, y, z){console.log(x, y, z); return [selected_gallery_index(), y, z]}",
inputs=[ui.preview_target_filename, gallery, ui.preview_target_filename], inputs=[ui.preview_target_filename, gallery, ui.preview_target_filename],
outputs=[*ui.pages] outputs=[*ui.pages]
) )

View File

@ -1,31 +0,0 @@
import html
import json
import os
from modules import shared, ui_extra_networks, sd_models
class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
def __init__(self):
super().__init__('Checkpoints')
def refresh(self):
shared.refresh_checkpoints()
def list_items(self):
checkpoint: sd_models.CheckpointInfo
for name, checkpoint in sd_models.checkpoints_list.items():
path, ext = os.path.splitext(checkpoint.filename)
yield {
"name": checkpoint.name_for_extra,
"filename": path,
"preview": self.find_preview(path),
"description": self.find_description(path),
"search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""),
"onclick": '"' + html.escape(f"""return selectCheckpoint({json.dumps(name)})""") + '"',
"local_preview": f"{path}.{shared.opts.samples_format}",
}
def allowed_directories_for_previews(self):
return [v for v in [shared.cmd_opts.ckpt_dir, sd_models.model_path] if v is not None]

View File

@ -14,15 +14,20 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
def list_items(self): def list_items(self):
for name, path in shared.hypernetworks.items(): for name, path in shared.hypernetworks.items():
path, ext = os.path.splitext(path) path, ext = os.path.splitext(path)
previews = [path + ".png", path + ".preview.png"]
preview = None
for file in previews:
if os.path.isfile(file):
preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file))
break
yield { yield {
"name": name, "name": name,
"filename": path, "filename": path,
"preview": self.find_preview(path), "preview": preview,
"description": self.find_description(path),
"search_term": self.search_terms_from_path(path),
"prompt": json.dumps(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"), "prompt": json.dumps(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.preview.{shared.opts.samples_format}", "local_preview": path + ".png",
} }
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):

View File

@ -1,7 +1,7 @@
import json import json
import os import os
from modules import ui_extra_networks, sd_hijack, shared from modules import ui_extra_networks, sd_hijack
class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage): class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
@ -15,14 +15,18 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
def list_items(self): def list_items(self):
for embedding in sd_hijack.model_hijack.embedding_db.word_embeddings.values(): for embedding in sd_hijack.model_hijack.embedding_db.word_embeddings.values():
path, ext = os.path.splitext(embedding.filename) path, ext = os.path.splitext(embedding.filename)
preview_file = path + ".preview.png"
preview = None
if os.path.isfile(preview_file):
preview = "./file=" + preview_file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(preview_file))
yield { yield {
"name": embedding.name, "name": embedding.name,
"filename": embedding.filename, "filename": embedding.filename,
"preview": self.find_preview(path), "preview": preview,
"description": self.find_description(path),
"search_term": self.search_terms_from_path(embedding.filename),
"prompt": json.dumps(embedding.name), "prompt": json.dumps(embedding.name),
"local_preview": f"{path}.preview.{shared.opts.samples_format}", "local_preview": path + ".preview.png",
} }
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):

View File

@ -11,6 +11,7 @@ from modules import modelloader, shared
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
NEAREST = (Image.Resampling.NEAREST if hasattr(Image, 'Resampling') else Image.NEAREST) NEAREST = (Image.Resampling.NEAREST if hasattr(Image, 'Resampling') else Image.NEAREST)
from modules.paths import models_path
class Upscaler: class Upscaler:
@ -38,7 +39,7 @@ class Upscaler:
self.mod_scale = None self.mod_scale = None
if self.model_path is None and self.name: if self.model_path is None and self.name:
self.model_path = os.path.join(shared.models_path, self.name) self.model_path = os.path.join(models_path, self.name)
if self.model_path and create_dirs: if self.model_path and create_dirs:
os.makedirs(self.model_path, exist_ok=True) os.makedirs(self.model_path, exist_ok=True)

View File

@ -4,7 +4,7 @@ basicsr
fonts fonts
font-roboto font-roboto
gfpgan gfpgan
gradio==3.23 gradio==3.16.2
invisible-watermark invisible-watermark
numpy numpy
omegaconf omegaconf
@ -16,7 +16,7 @@ pytorch_lightning==1.7.7
realesrgan realesrgan
scikit-image>=0.19 scikit-image>=0.19
timm==0.4.12 timm==0.4.12
transformers==4.25.1 transformers==4.19.2
torch torch
einops einops
jsonmerge jsonmerge
@ -30,4 +30,3 @@ GitPython
torchsde torchsde
safetensors safetensors
psutil psutil
rich

View File

@ -1,15 +1,15 @@
blendmodes==2022 blendmodes==2022
transformers==4.25.1 transformers==4.19.2
accelerate==0.12.0 accelerate==0.12.0
basicsr==1.4.2 basicsr==1.4.2
gfpgan==1.3.8 gfpgan==1.3.8
gradio==3.23 gradio==3.16.2
numpy==1.23.3 numpy==1.23.3
Pillow==9.4.0 Pillow==9.4.0
realesrgan==0.3.0 realesrgan==0.3.0
torch torch
omegaconf==2.2.3 omegaconf==2.2.3
pytorch_lightning==1.9.4 pytorch_lightning==1.7.6
scikit-image==0.19.2 scikit-image==0.19.2
fonts fonts
font-roboto font-roboto
@ -23,8 +23,7 @@ torchdiffeq==0.2.3
kornia==0.6.7 kornia==0.6.7
lark==1.1.2 lark==1.1.2
inflection==0.5.1 inflection==0.5.1
GitPython==3.1.30 GitPython==3.1.27
torchsde==0.2.5 torchsde==0.2.5
safetensors==0.3.0 safetensors==0.2.7
httpcore<=0.15 httpcore<=0.15
fastapi==0.94.0

View File

@ -1,9 +1,7 @@
function gradioApp() { function gradioApp() {
const elems = document.getElementsByTagName('gradio-app') const elems = document.getElementsByTagName('gradio-app')
const elem = elems.length == 0 ? document : elems[0] const gradioShadowRoot = elems.length == 0 ? null : elems[0].shadowRoot
return !!gradioShadowRoot ? gradioShadowRoot : document;
if (elem !== document) elem.getElementById = function(id){ return document.getElementById(id) }
return elem.shadowRoot ? elem.shadowRoot : elem
} }
function get_uiCurrentTab() { function get_uiCurrentTab() {

View File

@ -6,21 +6,23 @@ from tqdm import trange
import modules.scripts as scripts import modules.scripts as scripts
import gradio as gr import gradio as gr
from modules import processing, shared, sd_samplers, sd_samplers_common from modules import processing, shared, sd_samplers, prompt_parser
from modules.processing import Processed
from modules.shared import opts, cmd_opts, state
import torch import torch
import k_diffusion as K import k_diffusion as K
from PIL import Image
from torch import autocast
from einops import rearrange, repeat
def find_noise_for_image(p, cond, uncond, cfg_scale, steps): def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
x = p.init_latent x = p.init_latent
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
if shared.sd_model.parameterization == "v":
dnw = K.external.CompVisVDenoiser(shared.sd_model)
skip = 1
else:
dnw = K.external.CompVisDenoiser(shared.sd_model) dnw = K.external.CompVisDenoiser(shared.sd_model)
skip = 0
sigmas = dnw.get_sigmas(steps).flip(0) sigmas = dnw.get_sigmas(steps).flip(0)
shared.state.sampling_steps = steps shared.state.sampling_steps = steps
@ -35,7 +37,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
image_conditioning = torch.cat([p.image_conditioning] * 2) image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]} cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]] c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
t = dnw.sigma_to_t(sigma_in) t = dnw.sigma_to_t(sigma_in)
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in) eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
@ -48,7 +50,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
x = x + d * dt x = x + d * dt
sd_samplers_common.store_latent(x) sd_samplers.store_latent(x)
# This shouldn't be necessary, but solved some VRAM issues # This shouldn't be necessary, but solved some VRAM issues
del x_in, sigma_in, cond_in, c_out, c_in, t, del x_in, sigma_in, cond_in, c_out, c_in, t,
@ -67,12 +69,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
x = p.init_latent x = p.init_latent
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
if shared.sd_model.parameterization == "v":
dnw = K.external.CompVisVDenoiser(shared.sd_model)
skip = 1
else:
dnw = K.external.CompVisDenoiser(shared.sd_model) dnw = K.external.CompVisDenoiser(shared.sd_model)
skip = 0
sigmas = dnw.get_sigmas(steps).flip(0) sigmas = dnw.get_sigmas(steps).flip(0)
shared.state.sampling_steps = steps shared.state.sampling_steps = steps
@ -87,7 +84,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
image_conditioning = torch.cat([p.image_conditioning] * 2) image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]} cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]] c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
if i == 1: if i == 1:
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2)) t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
@ -107,7 +104,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
dt = sigmas[i] - sigmas[i - 1] dt = sigmas[i] - sigmas[i - 1]
x = x + d * dt x = x + d * dt
sd_samplers_common.store_latent(x) sd_samplers.store_latent(x)
# This shouldn't be necessary, but solved some VRAM issues # This shouldn't be necessary, but solved some VRAM issues
del x_in, sigma_in, cond_in, c_out, c_in, t, del x_in, sigma_in, cond_in, c_out, c_in, t,
@ -216,3 +213,4 @@ class Script(scripts.Script):
processed = processing.process_images(p) processed = processing.process_images(p)
return processed return processed

View File

@ -1,10 +1,13 @@
import math import numpy as np
from tqdm import trange
import gradio as gr
import modules.scripts as scripts import modules.scripts as scripts
from modules import deepbooru, images, processing, shared import gradio as gr
from modules import processing, shared, sd_samplers, images
from modules.processing import Processed from modules.processing import Processed
from modules.shared import opts, state from modules.sd_samplers import samplers
from modules.shared import opts, cmd_opts, state
class Script(scripts.Script): class Script(scripts.Script):
@ -16,65 +19,37 @@ class Script(scripts.Script):
def ui(self, is_img2img): def ui(self, is_img2img):
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops")) loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength")) denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, elem_id=self.elem_id("denoising_strength_change_factor"))
denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
return [loops, final_denoising_strength, denoising_curve, append_interrogation] return [loops, denoising_strength_change_factor]
def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation): def run(self, p, loops, denoising_strength_change_factor):
processing.fix_seed(p) processing.fix_seed(p)
batch_count = p.n_iter batch_count = p.n_iter
p.extra_generation_params = { p.extra_generation_params = {
"Final denoising strength": final_denoising_strength, "Denoising strength change factor": denoising_strength_change_factor,
"Denoising curve": denoising_curve
} }
p.batch_size = 1 p.batch_size = 1
p.n_iter = 1 p.n_iter = 1
info = None output_images, info = None, None
initial_seed = None initial_seed = None
initial_info = None initial_info = None
initial_denoising_strength = p.denoising_strength
grids = [] grids = []
all_images = [] all_images = []
original_init_image = p.init_images original_init_image = p.init_images
original_prompt = p.prompt
original_inpainting_fill = p.inpainting_fill
state.job_count = loops * batch_count state.job_count = loops * batch_count
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
def calculate_denoising_strength(loop): for n in range(batch_count):
strength = initial_denoising_strength
if loops == 1:
return strength
progress = loop / (loops - 1)
if denoising_curve == "Aggressive":
strength = math.sin((progress) * math.pi * 0.5)
elif denoising_curve == "Lazy":
strength = 1 - math.cos((progress) * math.pi * 0.5)
else:
strength = progress
change = (final_denoising_strength - initial_denoising_strength) * strength
return initial_denoising_strength + change
history = [] history = []
for n in range(batch_count):
# Reset to original init image at the start of each batch # Reset to original init image at the start of each batch
p.init_images = original_init_image p.init_images = original_init_image
# Reset to original denoising strength
p.denoising_strength = initial_denoising_strength
last_image = None
for i in range(loops): for i in range(loops):
p.n_iter = 1 p.n_iter = 1
p.batch_size = 1 p.batch_size = 1
@ -83,56 +58,29 @@ class Script(scripts.Script):
if opts.img2img_color_correction: if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections p.color_corrections = initial_color_corrections
if append_interrogation != "None":
p.prompt = original_prompt + ", " if original_prompt != "" else ""
if append_interrogation == "CLIP":
p.prompt += shared.interrogator.interrogate(p.init_images[0])
elif append_interrogation == "DeepBooru":
p.prompt += deepbooru.model.tag(p.init_images[0])
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}" state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
processed = processing.process_images(p) processed = processing.process_images(p)
# Generation cancelled.
if state.interrupted:
break
if initial_seed is None: if initial_seed is None:
initial_seed = processed.seed initial_seed = processed.seed
initial_info = processed.info initial_info = processed.info
init_img = processed.images[0]
p.init_images = [init_img]
p.seed = processed.seed + 1 p.seed = processed.seed + 1
p.denoising_strength = calculate_denoising_strength(i + 1) p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
history.append(processed.images[0])
if state.skipped:
break
last_image = processed.images[0]
p.init_images = [last_image]
p.inpainting_fill = 1 # Set "masked content" to "original" for next loop.
if batch_count == 1:
history.append(last_image)
all_images.append(last_image)
if batch_count > 1 and not state.skipped and not state.interrupted:
history.append(last_image)
all_images.append(last_image)
p.inpainting_fill = original_inpainting_fill
if state.interrupted:
break
if len(history) > 1:
grid = images.image_grid(history, rows=1) grid = images.image_grid(history, rows=1)
if opts.grid_save: if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p) images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
if opts.return_grid:
grids.append(grid) grids.append(grid)
all_images += history
if opts.return_grid:
all_images = grids + all_images all_images = grids + all_images
processed = Processed(p, all_images, initial_seed, initial_info) processed = Processed(p, all_images, initial_seed, initial_info)

View File

@ -17,8 +17,6 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
def ui(self): def ui(self):
selected_tab = gr.State(value=0) selected_tab = gr.State(value=0)
with gr.Column():
with FormRow():
with gr.Tabs(elem_id="extras_resize_mode"): with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by: with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize") upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
@ -106,28 +104,3 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
def image_changed(self): def image_changed(self):
upscale_cache.clear() upscale_cache.clear()
class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale):
name = "Simple Upscale"
order = 900
def ui(self):
with FormRow():
upscaler_name = gr.Dropdown(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
upscale_by = gr.Slider(minimum=0.05, maximum=8.0, step=0.05, label="Upscale by", value=2)
return {
"upscale_by": upscale_by,
"upscaler_name": upscaler_name,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None):
if upscaler_name is None or upscaler_name == "None":
return
upscaler1 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_name]), None)
assert upscaler1, f'could not find upscaler named {upscaler_name}'
pp.image = self.upscale(pp.image, pp.info, upscaler1, 0, upscale_by, 0, 0, False)
pp.info[f"Postprocess upscaler"] = upscaler1.name

View File

@ -45,33 +45,15 @@ class Script(scripts.Script):
return "Prompt matrix" return "Prompt matrix"
def ui(self, is_img2img): def ui(self, is_img2img):
gr.HTML('<br />')
with gr.Row():
with gr.Column():
put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False, elem_id=self.elem_id("put_at_start")) put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False, elem_id=self.elem_id("put_at_start"))
different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds")) different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds"))
with gr.Column():
prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", elem_id=self.elem_id("prompt_type"), value="positive")
variations_delimiter = gr.Radio(["comma", "space"], label="Select joining char", elem_id=self.elem_id("variations_delimiter"), value="comma")
with gr.Column():
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
return [put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size] return [put_at_start, different_seeds]
def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size): def run(self, p, put_at_start, different_seeds):
modules.processing.fix_seed(p) modules.processing.fix_seed(p)
# Raise error if promp type is not positive or negative
if prompt_type not in ["positive", "negative"]:
raise ValueError(f"Unknown prompt type {prompt_type}")
# Raise error if variations delimiter is not comma or space
if variations_delimiter not in ["comma", "space"]:
raise ValueError(f"Unknown variations delimiter {variations_delimiter}")
prompt = p.prompt if prompt_type == "positive" else p.negative_prompt original_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt
original_prompt = prompt[0] if type(prompt) == list else prompt
positive_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt
delimiter = ", " if variations_delimiter == "comma" else " "
all_prompts = [] all_prompts = []
prompt_matrix_parts = original_prompt.split("|") prompt_matrix_parts = original_prompt.split("|")
@ -84,23 +66,20 @@ class Script(scripts.Script):
else: else:
selected_prompts = [prompt_matrix_parts[0]] + selected_prompts selected_prompts = [prompt_matrix_parts[0]] + selected_prompts
all_prompts.append(delimiter.join(selected_prompts)) all_prompts.append(", ".join(selected_prompts))
p.n_iter = math.ceil(len(all_prompts) / p.batch_size) p.n_iter = math.ceil(len(all_prompts) / p.batch_size)
p.do_not_save_grid = True p.do_not_save_grid = True
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.") print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.")
if prompt_type == "positive":
p.prompt = all_prompts p.prompt = all_prompts
else:
p.negative_prompt = all_prompts
p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))] p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))]
p.prompt_for_display = positive_prompt p.prompt_for_display = original_prompt
processed = process_images(p) processed = process_images(p)
grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
grid = images.draw_prompt_matrix(grid, processed.images[0].width, processed.images[0].height, prompt_matrix_parts, margin_size) grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts)
processed.images.insert(0, grid) processed.images.insert(0, grid)
processed.index_of_first_image = 1 processed.index_of_first_image = 1
processed.infotexts.insert(0, processed.infotexts[0]) processed.infotexts.insert(0, processed.infotexts[0])

View File

@ -25,8 +25,6 @@ from modules.ui_components import ToolButton
fill_values_symbol = "\U0001f4d2" # 📒 fill_values_symbol = "\U0001f4d2" # 📒
AxisInfo = namedtuple('AxisInfo', ['axis', 'values'])
def apply_field(field): def apply_field(field):
def fun(p, x, xs): def fun(p, x, xs):
@ -125,25 +123,7 @@ def apply_vae(p, x, xs):
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _): def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(',')) p.styles = x.split(',')
def apply_uni_pc_order(p, x, xs):
opts.data["uni_pc_order"] = min(x, p.steps - 1)
def apply_face_restore(p, opt, x):
opt = opt.lower()
if opt == 'codeformer':
is_active = True
p.face_restoration_model = 'CodeFormer'
elif opt == 'gfpgan':
is_active = True
p.face_restoration_model = 'GFPGAN'
else:
is_active = opt in ('true', 'yes', 'y', '1')
p.restore_faces = is_active
def format_value_add_label(p, opt, x): def format_value_add_label(p, opt, x):
@ -206,7 +186,6 @@ axis_options = [
AxisOption("Steps", int, apply_field("steps")), AxisOption("Steps", int, apply_field("steps")),
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")), AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
AxisOption("CFG Scale", float, apply_field("cfg_scale")), AxisOption("CFG Scale", float, apply_field("cfg_scale")),
AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value), AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list), AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]), AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
@ -223,119 +202,69 @@ axis_options = [
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")), AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)), AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)), AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
] ]
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size): def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_images, swap_axes_processing_order):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels] ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels] hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
list_size = (len(xs) * len(ys) * len(zs)) # Temporary list of all the images that are generated to be populated into the grid.
# Will be filled with empty images for any individual step that fails to process properly
image_cache = [None] * (len(xs) * len(ys))
processed_result = None processed_result = None
cell_mode = "P"
cell_size = (1, 1)
state.job_count = list_size * p.n_iter state.job_count = len(xs) * len(ys) * p.n_iter
def process_cell(x, y, z, ix, iy, iz): def process_cell(x, y, ix, iy):
nonlocal processed_result nonlocal image_cache, processed_result, cell_mode, cell_size
def index(ix, iy, iz): state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
return ix + iy * len(xs) + iz * len(xs) * len(ys)
state.job = f"{index(ix, iy, iz) + 1} out of {list_size}" processed: Processed = cell(x, y)
processed: Processed = cell(x, y, z, ix, iy, iz) try:
# this dereference will throw an exception if the image was not processed
# (this happens in cases such as if the user stops the process from the UI)
processed_image = processed.images[0]
if processed_result is None: if processed_result is None:
# Use our first processed result object as a template container to hold our full results # Use our first valid processed result as a template container to hold our full results
processed_result = copy(processed) processed_result = copy(processed)
processed_result.images = [None] * list_size cell_mode = processed_image.mode
processed_result.all_prompts = [None] * list_size cell_size = processed_image.size
processed_result.all_seeds = [None] * list_size processed_result.images = [Image.new(cell_mode, cell_size)]
processed_result.infotexts = [None] * list_size
processed_result.index_of_first_image = 1
idx = index(ix, iy, iz) image_cache[ix + iy * len(xs)] = processed_image
if processed.images: if include_lone_images:
# Non-empty list indicates some degree of success. processed_result.images.append(processed_image)
processed_result.images[idx] = processed.images[0] processed_result.all_prompts.append(processed.prompt)
processed_result.all_prompts[idx] = processed.prompt processed_result.all_seeds.append(processed.seed)
processed_result.all_seeds[idx] = processed.seed processed_result.infotexts.append(processed.infotexts[0])
processed_result.infotexts[idx] = processed.infotexts[0] except:
else: image_cache[ix + iy * len(xs)] = Image.new(cell_mode, cell_size)
cell_mode = "P"
cell_size = (processed_result.width, processed_result.height)
if processed_result.images[0] is not None:
cell_mode = processed_result.images[0].mode
#This corrects size in case of batches:
cell_size = processed_result.images[0].size
processed_result.images[idx] = Image.new(cell_mode, cell_size)
if swap_axes_processing_order:
if first_axes_processed == 'x':
for ix, x in enumerate(xs):
if second_axes_processed == 'y':
for iy, y in enumerate(ys):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'y':
for iy, y in enumerate(ys):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'z':
for iz, z in enumerate(zs):
if second_axes_processed == 'x':
for ix, x in enumerate(xs): for ix, x in enumerate(xs):
for iy, y in enumerate(ys): for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz) process_cell(x, y, ix, iy)
else: else:
for iy, y in enumerate(ys): for iy, y in enumerate(ys):
for ix, x in enumerate(xs): for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz) process_cell(x, y, ix, iy)
if not processed_result: if not processed_result:
# Should never happen, I've only seen it on one of four open tabs and it needed to refresh. print("Unexpected error: draw_xy_grid failed to return even a single processed image")
print("Unexpected error: Processing could not begin, you may need to refresh the tab or restart the service.")
return Processed(p, [])
elif not any(processed_result.images):
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
return Processed(p, []) return Processed(p, [])
z_count = len(zs) grid = images.image_grid(image_cache, rows=len(ys))
sub_grids = [None] * z_count
for i in range(z_count):
start_index = (i * len(xs) * len(ys)) + i
end_index = start_index + len(xs) * len(ys)
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
if draw_legend: if draw_legend:
grid = images.draw_grid_annotations(grid, processed_result.images[start_index].size[0], processed_result.images[start_index].size[1], hor_texts, ver_texts, margin_size) grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
processed_result.images.insert(i, grid)
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
sub_grid_size = processed_result.images[0].size processed_result.images[0] = grid
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
if draw_legend:
z_grid = images.draw_grid_annotations(z_grid, sub_grid_size[0], sub_grid_size[1], title_texts, [[images.GridAnnotation()]])
processed_result.images.insert(0, z_grid)
#TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
#processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
#processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
processed_result.infotexts.insert(0, processed_result.infotexts[0])
return processed_result return processed_result
@ -344,11 +273,9 @@ class SharedSettingsStackHelper(object):
def __enter__(self): def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae self.vae = opts.sd_vae
self.uni_pc_order = opts.uni_pc_order
def __exit__(self, exc_type, exc_value, tb): def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae opts.data["sd_vae"] = self.vae
opts.data["uni_pc_order"] = self.uni_pc_order
modules.sd_models.reload_model_weights() modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights() modules.sd_vae.reload_vae_weights()
@ -364,7 +291,7 @@ re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+
class Script(scripts.Script): class Script(scripts.Script):
def title(self): def title(self):
return "X/Y/Z plot" return "X/Y plot"
def ui(self, is_img2img): def ui(self, is_img2img):
self.current_axis_options = [x for x in axis_options if type(x) == AxisOption or x.is_img2img == is_img2img] self.current_axis_options = [x for x in axis_options if type(x) == AxisOption or x.is_img2img == is_img2img]
@ -374,42 +301,24 @@ class Script(scripts.Script):
with gr.Row(): with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type")) x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values")) x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False) fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xy_grid_fill_x_tool_button", visible=False)
with gr.Row(): with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type")) y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values")) y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False) fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xy_grid_fill_y_tool_button", visible=False)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"): with gr.Row(variant="compact", elem_id="axis_options"):
with gr.Column():
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend")) draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
include_lone_images = gr.Checkbox(label='Include Separate Images', value=False, elem_id=self.elem_id("include_lone_images"))
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds")) no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
with gr.Column(): swap_axes_button = gr.Button(value="Swap axes", elem_id="xy_grid_swap_axes_button")
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
with gr.Column():
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
with gr.Row(variant="compact", elem_id="swap_axes"): def swap_axes(x_type, x_values, y_type, y_values):
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button") return self.current_axis_options[y_type].label, y_values, self.current_axis_options[x_type].label, x_values
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
def swap_axes(axis1_type, axis1_values, axis2_type, axis2_values): swap_args = [x_type, x_values, y_type, y_values]
return self.current_axis_options[axis2_type].label, axis2_values, self.current_axis_options[axis1_type].label, axis1_values swap_axes_button.click(swap_axes, inputs=swap_args, outputs=swap_args)
xy_swap_args = [x_type, x_values, y_type, y_values]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
yz_swap_args = [y_type, y_values, z_type, z_values]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
xz_swap_args = [x_type, x_values, z_type, z_values]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(x_type): def fill(x_type):
axis = self.current_axis_options[x_type] axis = self.current_axis_options[x_type]
@ -417,27 +326,16 @@ class Script(scripts.Script):
fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values]) fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values])
fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values]) fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values])
fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values])
def select_axis(x_type): def select_axis(x_type):
return gr.Button.update(visible=self.current_axis_options[x_type].choices is not None) return gr.Button.update(visible=self.current_axis_options[x_type].choices is not None)
x_type.change(fn=select_axis, inputs=[x_type], outputs=[fill_x_button]) x_type.change(fn=select_axis, inputs=[x_type], outputs=[fill_x_button])
y_type.change(fn=select_axis, inputs=[y_type], outputs=[fill_y_button]) y_type.change(fn=select_axis, inputs=[y_type], outputs=[fill_y_button])
z_type.change(fn=select_axis, inputs=[z_type], outputs=[fill_z_button])
self.infotext_fields = ( return [x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds]
(x_type, "X Type"),
(x_values, "X Values"),
(y_type, "Y Type"),
(y_values, "Y Values"),
(z_type, "Z Type"),
(z_values, "Z Values"),
)
return [x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size] def run(self, p, x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds):
def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size):
if not no_fixed_seeds: if not no_fixed_seeds:
modules.processing.fix_seed(p) modules.processing.fix_seed(p)
@ -448,7 +346,7 @@ class Script(scripts.Script):
if opt.label == 'Nothing': if opt.label == 'Nothing':
return [0] return [0]
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x] valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))]
if opt.type == int: if opt.type == int:
valslist_ext = [] valslist_ext = []
@ -511,14 +409,6 @@ class Script(scripts.Script):
y_opt = self.current_axis_options[y_type] y_opt = self.current_axis_options[y_type]
ys = process_axis(y_opt, y_values) ys = process_axis(y_opt, y_values)
z_opt = self.current_axis_options[z_type]
zs = process_axis(z_opt, z_values)
# this could be moved to common code, but unlikely to be ever triggered anywhere else
Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes
grid_mp = round(len(xs) * len(ys) * len(zs) * p.width * p.height / 1000000)
assert grid_mp < opts.img_max_size_mp, f'Error: Resulting grid would be too large ({grid_mp} MPixels) (max configured size is {opts.img_max_size_mp} MPixels)'
def fix_axis_seeds(axis_opt, axis_list): def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label in ['Seed', 'Var. seed']: if axis_opt.label in ['Seed', 'Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list] return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
@ -528,26 +418,21 @@ class Script(scripts.Script):
if not no_fixed_seeds: if not no_fixed_seeds:
xs = fix_axis_seeds(x_opt, xs) xs = fix_axis_seeds(x_opt, xs)
ys = fix_axis_seeds(y_opt, ys) ys = fix_axis_seeds(y_opt, ys)
zs = fix_axis_seeds(z_opt, zs)
if x_opt.label == 'Steps': if x_opt.label == 'Steps':
total_steps = sum(xs) * len(ys) * len(zs) total_steps = sum(xs) * len(ys)
elif y_opt.label == 'Steps': elif y_opt.label == 'Steps':
total_steps = sum(ys) * len(xs) * len(zs) total_steps = sum(ys) * len(xs)
elif z_opt.label == 'Steps':
total_steps = sum(zs) * len(xs) * len(ys)
else: else:
total_steps = p.steps * len(xs) * len(ys) * len(zs) total_steps = p.steps * len(xs) * len(ys)
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr: if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
if x_opt.label == "Hires steps": if x_opt.label == "Hires steps":
total_steps += sum(xs) * len(ys) * len(zs) total_steps += sum(xs) * len(ys)
elif y_opt.label == "Hires steps": elif y_opt.label == "Hires steps":
total_steps += sum(ys) * len(xs) * len(zs) total_steps += sum(ys) * len(xs)
elif z_opt.label == "Hires steps":
total_steps += sum(zs) * len(xs) * len(ys)
elif p.hr_second_pass_steps: elif p.hr_second_pass_steps:
total_steps += p.hr_second_pass_steps * len(xs) * len(ys) * len(zs) total_steps += p.hr_second_pass_steps * len(xs) * len(ys)
else: else:
total_steps *= 2 total_steps *= 2
@ -555,57 +440,28 @@ class Script(scripts.Script):
image_cell_count = p.n_iter * p.batch_size image_cell_count = p.n_iter * p.batch_size
cell_console_text = f"; {image_cell_count} images per cell" if image_cell_count > 1 else "" cell_console_text = f"; {image_cell_count} images per cell" if image_cell_count > 1 else ""
plural_s = 's' if len(zs) > 1 else '' print(f"X/Y plot will create {len(xs) * len(ys) * image_cell_count} images on a {len(xs)}x{len(ys)} grid{cell_console_text}. (Total steps to process: {total_steps})")
print(f"X/Y/Z plot will create {len(xs) * len(ys) * len(zs) * image_cell_count} images on {len(zs)} {len(xs)}x{len(ys)} grid{plural_s}{cell_console_text}. (Total steps to process: {total_steps})")
shared.total_tqdm.updateTotal(total_steps) shared.total_tqdm.updateTotal(total_steps)
state.xyz_plot_x = AxisInfo(x_opt, xs) grid_infotext = [None]
state.xyz_plot_y = AxisInfo(y_opt, ys)
state.xyz_plot_z = AxisInfo(z_opt, zs)
# If one of the axes is very slow to change between (like SD model # If one of the axes is very slow to change between (like SD model
# checkpoint), then make sure it is in the outer iteration of the nested # checkpoint), then make sure it is in the outer iteration of the nested
# `for` loop. # `for` loop.
first_axes_processed = 'z' swap_axes_processing_order = x_opt.cost > y_opt.cost
second_axes_processed = 'y'
if x_opt.cost > y_opt.cost and x_opt.cost > z_opt.cost:
first_axes_processed = 'x'
if y_opt.cost > z_opt.cost:
second_axes_processed = 'y'
else:
second_axes_processed = 'z'
elif y_opt.cost > x_opt.cost and y_opt.cost > z_opt.cost:
first_axes_processed = 'y'
if x_opt.cost > z_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'z'
elif z_opt.cost > x_opt.cost and z_opt.cost > y_opt.cost:
first_axes_processed = 'z'
if x_opt.cost > y_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'y'
grid_infotext = [None] * (1 + len(zs)) def cell(x, y):
def cell(x, y, z, ix, iy, iz):
if shared.state.interrupted: if shared.state.interrupted:
return Processed(p, [], p.seed, "") return Processed(p, [], p.seed, "")
pc = copy(p) pc = copy(p)
pc.styles = pc.styles[:]
x_opt.apply(pc, x, xs) x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys) y_opt.apply(pc, y, ys)
z_opt.apply(pc, z, zs)
res = process_images(pc) res = process_images(pc)
# Sets subgrid infotexts if grid_infotext[0] is None:
subgrid_index = 1 + iz
if grid_infotext[subgrid_index] is None and ix == 0 and iy == 0:
pc.extra_generation_params = copy(pc.extra_generation_params) pc.extra_generation_params = copy(pc.extra_generation_params)
pc.extra_generation_params['Script'] = self.title()
if x_opt.label != 'Nothing': if x_opt.label != 'Nothing':
pc.extra_generation_params["X Type"] = x_opt.label pc.extra_generation_params["X Type"] = x_opt.label
@ -619,67 +475,24 @@ class Script(scripts.Script):
if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds: if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys]) pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
grid_infotext[subgrid_index] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
# Sets main grid infotext
if grid_infotext[0] is None and ix == 0 and iy == 0 and iz == 0:
pc.extra_generation_params = copy(pc.extra_generation_params)
if z_opt.label != 'Nothing':
pc.extra_generation_params["Z Type"] = z_opt.label
pc.extra_generation_params["Z Values"] = z_values
if z_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Z Values"] = ", ".join([str(z) for z in zs])
grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds) grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
return res return res
with SharedSettingsStackHelper(): with SharedSettingsStackHelper():
processed = draw_xyz_grid( processed = draw_xy_grid(
p, p,
xs=xs, xs=xs,
ys=ys, ys=ys,
zs=zs,
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs], x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys], y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
z_labels=[z_opt.format_value(p, z_opt, z) for z in zs],
cell=cell, cell=cell,
draw_legend=draw_legend, draw_legend=draw_legend,
include_lone_images=include_lone_images, include_lone_images=include_lone_images,
include_sub_grids=include_sub_grids, swap_axes_processing_order=swap_axes_processing_order
first_axes_processed=first_axes_processed,
second_axes_processed=second_axes_processed,
margin_size=margin_size
) )
if not processed.images:
# It broke, no further handling needed.
return processed
z_count = len(zs)
# Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
processed.infotexts[:1+z_count] = grid_infotext[:1+z_count]
if not include_lone_images:
# Don't need sub-images anymore, drop from list:
processed.images = processed.images[:z_count+1]
if opts.grid_save: if opts.grid_save:
# Auto-save main and sub-grids: images.save_image(processed.images[0], p.outpath_grids, "xy_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
grid_count = z_count + 1 if z_count > 1 else 1
for g in range(grid_count):
#TODO: See previous comment about intentional data misalignment.
adj_g = g-1 if g > 0 else g
images.save_image(processed.images[g], p.outpath_grids, "xyz_grid", info=processed.infotexts[g], extension=opts.grid_format, prompt=processed.all_prompts[adj_g], seed=processed.all_seeds[adj_g], grid=True, p=processed)
if not include_sub_grids:
# Done with sub-grids, drop all related information:
for sg in range(z_count):
del processed.images[1]
del processed.all_prompts[1]
del processed.all_seeds[1]
del processed.infotexts[1]
return processed return processed

874
style.css

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,7 @@
import os
import unittest import unittest
import requests import requests
from gradio.processing_utils import encode_pil_to_base64 from gradio.processing_utils import encode_pil_to_base64
from PIL import Image from PIL import Image
from modules.paths import script_path
class TestExtrasWorking(unittest.TestCase): class TestExtrasWorking(unittest.TestCase):
def setUp(self): def setUp(self):
@ -21,7 +19,7 @@ class TestExtrasWorking(unittest.TestCase):
"upscaler_1": "None", "upscaler_1": "None",
"upscaler_2": "None", "upscaler_2": "None",
"extras_upscaler_2_visibility": 0, "extras_upscaler_2_visibility": 0,
"image": encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png"))) "image": encode_pil_to_base64(Image.open(r"test/test_files/img2img_basic.png"))
} }
def test_simple_upscaling_performed(self): def test_simple_upscaling_performed(self):
@ -33,7 +31,7 @@ class TestPngInfoWorking(unittest.TestCase):
def setUp(self): def setUp(self):
self.url_png_info = "http://localhost:7860/sdapi/v1/extra-single-image" self.url_png_info = "http://localhost:7860/sdapi/v1/extra-single-image"
self.png_info = { self.png_info = {
"image": encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png"))) "image": encode_pil_to_base64(Image.open(r"test/test_files/img2img_basic.png"))
} }
def test_png_info_performed(self): def test_png_info_performed(self):
@ -44,7 +42,7 @@ class TestInterrogateWorking(unittest.TestCase):
def setUp(self): def setUp(self):
self.url_interrogate = "http://localhost:7860/sdapi/v1/extra-single-image" self.url_interrogate = "http://localhost:7860/sdapi/v1/extra-single-image"
self.interrogate = { self.interrogate = {
"image": encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png"))), "image": encode_pil_to_base64(Image.open(r"test/test_files/img2img_basic.png")),
"model": "clip" "model": "clip"
} }

View File

@ -1,16 +1,14 @@
import os
import unittest import unittest
import requests import requests
from gradio.processing_utils import encode_pil_to_base64 from gradio.processing_utils import encode_pil_to_base64
from PIL import Image from PIL import Image
from modules.paths import script_path
class TestImg2ImgWorking(unittest.TestCase): class TestImg2ImgWorking(unittest.TestCase):
def setUp(self): def setUp(self):
self.url_img2img = "http://localhost:7860/sdapi/v1/img2img" self.url_img2img = "http://localhost:7860/sdapi/v1/img2img"
self.simple_img2img = { self.simple_img2img = {
"init_images": [encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png")))], "init_images": [encode_pil_to_base64(Image.open(r"test/test_files/img2img_basic.png"))],
"resize_mode": 0, "resize_mode": 0,
"denoising_strength": 0.75, "denoising_strength": 0.75,
"mask": None, "mask": None,
@ -49,11 +47,11 @@ class TestImg2ImgWorking(unittest.TestCase):
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200) self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
def test_inpainting_masked_performed(self): def test_inpainting_masked_performed(self):
self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png"))) self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200) self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
def test_inpainting_with_inverted_masked_performed(self): def test_inpainting_with_inverted_masked_performed(self):
self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png"))) self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
self.simple_img2img["inpainting_mask_invert"] = True self.simple_img2img["inpainting_mask_invert"] = True
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200) self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)

Some files were not shown because too many files have changed in this diff Show More