import torch import gradio as gr import lora import extra_networks_lora import ui_extra_networks_lora from modules import script_callbacks, ui_extra_networks, extra_networks, shared def unload(): torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora torch.nn.modules.linear.NonDynamicallyQuantizableLinear.forward = torch.nn.NonDynamicallyQuantizableLinear_forward_before_lora def before_ui(): ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora()) extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora()) if not hasattr(torch.nn, 'Linear_forward_before_lora'): torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward if not hasattr(torch.nn, 'Conv2d_forward_before_lora'): torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward if not hasattr(torch.nn, 'NonDynamicallyQuantizableLinear_forward_before_lora'): torch.nn.NonDynamicallyQuantizableLinear_forward_before_lora = torch.nn.modules.linear.NonDynamicallyQuantizableLinear.forward torch.nn.Linear.forward = lora.lora_Linear_forward torch.nn.Conv2d.forward = lora.lora_Conv2d_forward torch.nn.modules.linear.NonDynamicallyQuantizableLinear.forward = lora.lora_NonDynamicallyQuantizableLinear_forward script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules) script_callbacks.on_script_unloaded(unload) script_callbacks.on_before_ui(before_ui) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras), "lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"), }))