# original source: # https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py # license: # MIT License (see Memory Efficient Attention under the Licenses section in the web UI interface for the full license) # credit: # Amin Rezaei (original author) # Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) # brkirch (modified to use torch.narrow instead of dynamic_slice implementation) # implementation of: # Self-attention Does Not Need O(n2) Memory": # https://arxiv.org/abs/2112.05682v2 from functools import partial import torch from torch import Tensor from torch.utils.checkpoint import checkpoint import math from typing import Optional, NamedTuple, List def narrow_trunc( input: Tensor, dim: int, start: int, length: int ) -> Tensor: return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start) class AttnChunk(NamedTuple): exp_values: Tensor exp_weights_sum: Tensor max_score: Tensor class SummarizeChunk: @staticmethod def __call__( query: Tensor, key: Tensor, value: Tensor, ) -> AttnChunk: ... class ComputeQueryChunkAttn: @staticmethod def __call__( query: Tensor, key: Tensor, value: Tensor, ) -> Tensor: ... def _summarize_chunk( query: Tensor, key: Tensor, value: Tensor, scale: float, ) -> AttnChunk: attn_weights = torch.baddbmm( torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), query, key.transpose(1,2), alpha=scale, beta=0, ) max_score, _ = torch.max(attn_weights, -1, keepdim=True) max_score = max_score.detach() exp_weights = torch.exp(attn_weights - max_score) exp_values = torch.bmm(exp_weights, value) if query.device.type == 'mps' else torch.bmm(exp_weights, value.to(exp_weights.dtype)).to(value.dtype) max_score = max_score.squeeze(-1) return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) def _query_chunk_attention( query: Tensor, key: Tensor, value: Tensor, summarize_chunk: SummarizeChunk, kv_chunk_size: int, ) -> Tensor: batch_x_heads, k_tokens, k_channels_per_head = key.shape _, _, v_channels_per_head = value.shape def chunk_scanner(chunk_idx: int) -> AttnChunk: key_chunk = narrow_trunc( key, 1, chunk_idx, kv_chunk_size ) value_chunk = narrow_trunc( value, 1, chunk_idx, kv_chunk_size ) return summarize_chunk(query, key_chunk, value_chunk) chunks: List[AttnChunk] = [ chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size) ] acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) chunk_values, chunk_weights, chunk_max = acc_chunk global_max, _ = torch.max(chunk_max, 0, keepdim=True) max_diffs = torch.exp(chunk_max - global_max) chunk_values *= torch.unsqueeze(max_diffs, -1) chunk_weights *= max_diffs all_values = chunk_values.sum(dim=0) all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) return all_values / all_weights # TODO: refactor CrossAttention#get_attention_scores to share code with this def _get_attention_scores_no_kv_chunking( query: Tensor, key: Tensor, value: Tensor, scale: float, ) -> Tensor: attn_scores = torch.baddbmm( torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), query, key.transpose(1,2), alpha=scale, beta=0, ) attn_probs = attn_scores.softmax(dim=-1) del attn_scores hidden_states_slice = torch.bmm(attn_probs, value) if query.device.type == 'mps' else torch.bmm(attn_probs, value.to(attn_probs.dtype)).to(value.dtype) return hidden_states_slice class ScannedChunk(NamedTuple): chunk_idx: int attn_chunk: AttnChunk def efficient_dot_product_attention( query: Tensor, key: Tensor, value: Tensor, query_chunk_size=1024, kv_chunk_size: Optional[int] = None, kv_chunk_size_min: Optional[int] = None, use_checkpoint=True, ): """Computes efficient dot-product attention given query, key, and value. This is efficient version of attention presented in https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. Args: query: queries for calculating attention with shape of `[batch * num_heads, tokens, channels_per_head]`. key: keys for calculating attention with shape of `[batch * num_heads, tokens, channels_per_head]`. value: values to be used in attention with shape of `[batch * num_heads, tokens, channels_per_head]`. query_chunk_size: int: query chunks size kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens) kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done). use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) Returns: Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. """ batch_x_heads, q_tokens, q_channels_per_head = query.shape _, k_tokens, _ = key.shape scale = q_channels_per_head ** -0.5 kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens) if kv_chunk_size_min is not None: kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min) def get_query_chunk(chunk_idx: int) -> Tensor: return narrow_trunc( query, 1, chunk_idx, min(query_chunk_size, q_tokens) ) summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale) summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk compute_query_chunk_attn: ComputeQueryChunkAttn = partial( _get_attention_scores_no_kv_chunking, scale=scale ) if k_tokens <= kv_chunk_size else ( # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw) partial( _query_chunk_attention, kv_chunk_size=kv_chunk_size, summarize_chunk=summarize_chunk, ) ) if q_tokens <= query_chunk_size: # fast-path for when there's just 1 query chunk return compute_query_chunk_attn( query=query, key=key, value=value, ) # slices of res tensor are mutable, modifications made # to the slices will affect the original tensor. # if output of compute_query_chunk_attn function has same number of # dimensions as input query tensor, we initialize tensor like this: num_query_chunks = int(np.ceil(q_tokens / query_chunk_size)) query_shape = get_query_chunk(0).shape res_shape = (query_shape[0], query_shape[1] * num_query_chunks, *query_shape[2:]) res_dtype = get_query_chunk(0).dtype res = torch.zeros(res_shape, dtype=res_dtype) for i in range(num_query_chunks): attn_scores = compute_query_chunk_attn( query=get_query_chunk(i * query_chunk_size), key=key, value=value, ) res[:, i * query_chunk_size:(i + 1) * query_chunk_size, :] = attn_scores return res