WebUI/modules/hypernetworks/ui.py
2023-05-10 11:05:02 +03:00

39 lines
1.5 KiB
Python

import html
import gradio as gr
import modules.hypernetworks.hypernetwork
from modules import devices, sd_hijack, shared
not_available = ["hardswish", "multiheadattention"]
keys = [x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available]
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure)
return gr.Dropdown.update(choices=sorted(shared.hypernetworks.keys())), f"Created: {filename}", ""
def train_hypernetwork(*args):
shared.loaded_hypernetworks = []
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
try:
sd_hijack.undo_optimizations()
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
Hypernetwork saved to {html.escape(filename)}
"""
return res, ""
except Exception:
raise
finally:
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
sd_hijack.apply_optimizations()