188 lines
6.4 KiB
Python
188 lines
6.4 KiB
Python
import html
|
|
import json
|
|
import random
|
|
|
|
import gradio as gr
|
|
import re
|
|
|
|
from modules import ui_extra_networks_user_metadata
|
|
|
|
|
|
def is_non_comma_tagset(tags):
|
|
average_tag_length = sum(len(x) for x in tags.keys()) / len(tags)
|
|
|
|
return average_tag_length >= 16
|
|
|
|
|
|
re_word = re.compile(r"[-_\w']+")
|
|
re_comma = re.compile(r" *, *")
|
|
|
|
|
|
def build_tags(metadata):
|
|
tags = {}
|
|
|
|
for _, tags_dict in metadata.get("ss_tag_frequency", {}).items():
|
|
for tag, tag_count in tags_dict.items():
|
|
tag = tag.strip()
|
|
tags[tag] = tags.get(tag, 0) + int(tag_count)
|
|
|
|
if tags and is_non_comma_tagset(tags):
|
|
new_tags = {}
|
|
|
|
for text, text_count in tags.items():
|
|
for word in re.findall(re_word, text):
|
|
if len(word) < 3:
|
|
continue
|
|
|
|
new_tags[word] = new_tags.get(word, 0) + text_count
|
|
|
|
tags = new_tags
|
|
|
|
ordered_tags = sorted(tags.keys(), key=tags.get, reverse=True)
|
|
|
|
return [(tag, tags[tag]) for tag in ordered_tags]
|
|
|
|
|
|
class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor):
|
|
def __init__(self, ui, tabname, page):
|
|
super().__init__(ui, tabname, page)
|
|
|
|
self.taginfo = None
|
|
self.edit_activation_text = None
|
|
self.slider_preferred_weight = None
|
|
self.edit_notes = None
|
|
|
|
def save_lora_user_metadata(self, name, desc, activation_text, preferred_weight, notes):
|
|
user_metadata = self.get_user_metadata(name)
|
|
user_metadata["description"] = desc
|
|
user_metadata["activation text"] = activation_text
|
|
user_metadata["preferred weight"] = preferred_weight
|
|
user_metadata["notes"] = notes
|
|
|
|
self.write_user_metadata(name, user_metadata)
|
|
|
|
def get_metadata_table(self, name):
|
|
table = super().get_metadata_table(name)
|
|
item = self.page.items.get(name, {})
|
|
metadata = json.loads(item.get("metadata") or '{}')
|
|
|
|
keys = [
|
|
('ss_sd_model_name', "Model:"),
|
|
('ss_resolution', "Resolution:"),
|
|
('ss_clip_skip', "Clip skip:"),
|
|
]
|
|
|
|
for key, label in keys:
|
|
value = metadata.get(key, None)
|
|
if value is not None and str(value) != "None":
|
|
table.append((label, html.escape(value)))
|
|
|
|
image_count = 0
|
|
for _, params in metadata.get("ss_dataset_dirs", {}).items():
|
|
image_count += int(params.get("img_count", 0))
|
|
|
|
if image_count:
|
|
table.append(("Dataset size:", image_count))
|
|
|
|
return table
|
|
|
|
def put_values_into_components(self, name):
|
|
user_metadata = self.get_user_metadata(name)
|
|
values = super().put_values_into_components(name)
|
|
|
|
item = self.page.items.get(name, {})
|
|
metadata = json.loads(item.get("metadata") or '{}')
|
|
|
|
tags = build_tags(metadata)
|
|
gradio_tags = [(tag, str(count)) for tag, count in tags[0:24]]
|
|
|
|
return [
|
|
*values[0:4],
|
|
gr.HighlightedText.update(value=gradio_tags, visible=True if tags else False),
|
|
user_metadata.get('activation text', ''),
|
|
float(user_metadata.get('preferred weight', 0.0)),
|
|
user_metadata.get('notes', ''),
|
|
gr.update(visible=True if tags else False),
|
|
gr.update(value=self.generate_random_prompt_from_tags(tags), visible=True if tags else False),
|
|
]
|
|
|
|
def generate_random_prompt(self, name):
|
|
item = self.page.items.get(name, {})
|
|
metadata = json.loads(item.get("metadata") or '{}')
|
|
tags = build_tags(metadata)
|
|
|
|
return self.generate_random_prompt_from_tags(tags)
|
|
|
|
def generate_random_prompt_from_tags(self, tags):
|
|
max_count = None
|
|
res = []
|
|
for tag, count in tags:
|
|
if not max_count:
|
|
max_count = count
|
|
|
|
v = random.random() * max_count
|
|
if count > v:
|
|
res.append(tag)
|
|
|
|
return ", ".join(sorted(res))
|
|
|
|
def create_editor(self):
|
|
self.create_default_editor_elems()
|
|
|
|
self.taginfo = gr.HighlightedText(label="Tags")
|
|
self.edit_activation_text = gr.Text(label='Activation text', info="Will be added to prompt along with Lora")
|
|
self.slider_preferred_weight = gr.Slider(label='Preferred weight', info="Set to 0 to disable", minimum=0.0, maximum=2.0, step=0.01)
|
|
|
|
with gr.Row() as row_random_prompt:
|
|
with gr.Column(scale=8):
|
|
random_prompt = gr.Textbox(label='Random prompt', lines=4, max_lines=4, interactive=False)
|
|
|
|
with gr.Column(scale=1, min_width=120):
|
|
generate_random_prompt = gr.Button('Generate').style(full_width=True, size="lg")
|
|
|
|
self.edit_notes = gr.TextArea(label='Notes', lines=4)
|
|
|
|
generate_random_prompt.click(fn=self.generate_random_prompt, inputs=[self.edit_name_input], outputs=[random_prompt])
|
|
|
|
def select_tag(activation_text, evt: gr.SelectData):
|
|
tag = evt.value[0]
|
|
|
|
words = re.split(re_comma, activation_text)
|
|
if tag in words:
|
|
words = [x for x in words if x != tag and x.strip()]
|
|
return ", ".join(words)
|
|
|
|
return activation_text + ", " + tag if activation_text else tag
|
|
|
|
self.taginfo.select(fn=select_tag, inputs=[self.edit_activation_text], outputs=[self.edit_activation_text], show_progress=False)
|
|
|
|
self.create_default_buttons()
|
|
|
|
viewed_components = [
|
|
self.edit_name,
|
|
self.edit_description,
|
|
self.html_filedata,
|
|
self.html_preview,
|
|
self.taginfo,
|
|
self.edit_activation_text,
|
|
self.slider_preferred_weight,
|
|
self.edit_notes,
|
|
row_random_prompt,
|
|
random_prompt,
|
|
]
|
|
|
|
self.button_edit\
|
|
.click(fn=self.put_values_into_components, inputs=[self.edit_name_input], outputs=viewed_components)\
|
|
.then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[self.box])
|
|
|
|
edited_components = [
|
|
self.edit_description,
|
|
self.edit_activation_text,
|
|
self.slider_preferred_weight,
|
|
self.edit_notes,
|
|
]
|
|
|
|
self.button_save\
|
|
.click(fn=self.save_lora_user_metadata, inputs=[self.edit_name_input, *edited_components], outputs=[]) \
|
|
.then(fn=None, _js="extraNetworksReloadAll")
|