WebUI/modules/sd_samplers_common.py

78 lines
2.7 KiB
Python

from collections import namedtuple, deque
import numpy as np
import torch
from PIL import Image
import torchsde._brownian.brownian_interval
from modules import devices, processing, images, sd_vae_approx
from modules.shared import opts, state
import modules.shared as shared
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
def single_sample_to_image(sample, approximation=None):
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
class InterruptedException(BaseException):
pass
# MPS fix for randn in torchsde
def torchsde_randn(size, dtype, device, seed):
if device.type == 'mps':
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
else:
generator = torch.Generator(device).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=device, generator=generator)
torchsde._brownian.brownian_interval._randn = torchsde_randn