WebUI/modules/sd_models.py
2023-05-27 15:47:33 +03:00

621 lines
22 KiB
Python

import collections
import os.path
import sys
import gc
import threading
import torch
import re
import safetensors.torch
from omegaconf import OmegaConf
from os import mkdir
from urllib import request
import ldm.modules.midas as midas
from ldm.util import instantiate_from_config
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet
from modules.sd_hijack_inpainting import do_inpainting_hijack
from modules.timer import Timer
import tomesd
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
checkpoints_list = {}
checkpoint_alisases = {}
checkpoints_loaded = collections.OrderedDict()
class CheckpointInfo:
def __init__(self, filename):
self.filename = filename
abspath = os.path.abspath(filename)
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(filename)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
self.name = name
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
self.hash = model_hash(filename)
self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
self.shorthash = self.sha256[0:10] if self.sha256 else None
self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
self.metadata = {}
_, ext = os.path.splitext(self.filename)
if ext.lower() == ".safetensors":
try:
self.metadata = read_metadata_from_safetensors(filename)
except Exception as e:
errors.display(e, f"reading checkpoint metadata: {filename}")
def register(self):
checkpoints_list[self.title] = self
for id in self.ids:
checkpoint_alisases[id] = self
def calculate_shorthash(self):
self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}")
if self.sha256 is None:
return
self.shorthash = self.sha256[0:10]
if self.shorthash not in self.ids:
self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]']
checkpoints_list.pop(self.title)
self.title = f'{self.name} [{self.shorthash}]'
self.register()
return self.shorthash
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging, CLIPModel # noqa: F401
logging.set_verbosity_error()
except Exception:
pass
def setup_model():
if not os.path.exists(model_path):
os.makedirs(model_path)
enable_midas_autodownload()
def checkpoint_tiles():
def convert(name):
return int(name) if name.isdigit() else name.lower()
def alphanumeric_key(key):
return [convert(c) for c in re.split('([0-9]+)', key)]
return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key)
def list_models():
checkpoints_list.clear()
checkpoint_alisases.clear()
cmd_ckpt = shared.cmd_opts.ckpt
if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
model_url = None
else:
model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
if os.path.exists(cmd_ckpt):
checkpoint_info = CheckpointInfo(cmd_ckpt)
checkpoint_info.register()
shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in sorted(model_list, key=str.lower):
checkpoint_info = CheckpointInfo(filename)
checkpoint_info.register()
def get_closet_checkpoint_match(search_string):
checkpoint_info = checkpoint_alisases.get(search_string, None)
if checkpoint_info is not None:
return checkpoint_info
found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title))
if found:
return found[0]
return None
def model_hash(filename):
"""old hash that only looks at a small part of the file and is prone to collisions"""
try:
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return 'NOFILE'
def select_checkpoint():
model_checkpoint = shared.opts.sd_model_checkpoint
checkpoint_info = checkpoint_alisases.get(model_checkpoint, None)
if checkpoint_info is not None:
return checkpoint_info
if len(checkpoints_list) == 0:
print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
if shared.cmd_opts.ckpt is not None:
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
print("Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
checkpoint_info = next(iter(checkpoints_list.values()))
if model_checkpoint is not None:
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
return checkpoint_info
checkpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
def transform_checkpoint_dict_key(k):
for text, replacement in checkpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
return k
def get_state_dict_from_checkpoint(pl_sd):
pl_sd = pl_sd.pop("state_dict", pl_sd)
pl_sd.pop("state_dict", None)
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if new_key is not None:
sd[new_key] = v
pl_sd.clear()
pl_sd.update(sd)
return pl_sd
def read_metadata_from_safetensors(filename):
import json
with open(filename, mode="rb") as file:
metadata_len = file.read(8)
metadata_len = int.from_bytes(metadata_len, "little")
json_start = file.read(2)
assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
json_data = json_start + file.read(metadata_len-2)
json_obj = json.loads(json_data)
res = {}
for k, v in json_obj.get("__metadata__", {}).items():
res[k] = v
if isinstance(v, str) and v[0:1] == '{':
try:
res[k] = json.loads(v)
except Exception:
pass
return res
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
_, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors":
device = map_location or shared.weight_load_location or devices.get_optimal_device_name()
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
else:
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
if print_global_state and "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = get_state_dict_from_checkpoint(pl_sd)
return sd
def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
if checkpoint_info in checkpoints_loaded:
# use checkpoint cache
print(f"Loading weights [{sd_model_hash}] from cache")
return checkpoints_loaded[checkpoint_info]
print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
res = read_state_dict(checkpoint_info.filename)
timer.record("load weights from disk")
return res
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
if state_dict is None:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
model.load_state_dict(state_dict, strict=False)
del state_dict
timer.record("apply weights to model")
if shared.opts.sd_checkpoint_cache > 0:
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
timer.record("apply channels_last")
if not shared.cmd_opts.no_half:
vae = model.first_stage_model
depth_model = getattr(model, 'depth_model', None)
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
if shared.cmd_opts.no_half_vae:
model.first_stage_model = None
# with --upcast-sampling, don't convert the depth model weights to float16
if shared.cmd_opts.upcast_sampling and depth_model:
model.depth_model = None
model.half()
model.first_stage_model = vae
if depth_model:
model.depth_model = depth_model
timer.record("apply half()")
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
devices.dtype_unet = model.model.diffusion_model.dtype
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
model.first_stage_model.to(devices.dtype_vae)
timer.record("apply dtype to VAE")
# clean up cache if limit is reached
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
checkpoints_loaded.popitem(last=False)
model.sd_model_hash = sd_model_hash
model.sd_model_checkpoint = checkpoint_info.filename
model.sd_checkpoint_info = checkpoint_info
shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256
model.logvar = model.logvar.to(devices.device) # fix for training
sd_vae.delete_base_vae()
sd_vae.clear_loaded_vae()
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename)
sd_vae.load_vae(model, vae_file, vae_source)
timer.record("load VAE")
def enable_midas_autodownload():
"""
Gives the ldm.modules.midas.api.load_model function automatic downloading.
When the 512-depth-ema model, and other future models like it, is loaded,
it calls midas.api.load_model to load the associated midas depth model.
This function applies a wrapper to download the model to the correct
location automatically.
"""
midas_path = os.path.join(paths.models_path, 'midas')
# stable-diffusion-stability-ai hard-codes the midas model path to
# a location that differs from where other scripts using this model look.
# HACK: Overriding the path here.
for k, v in midas.api.ISL_PATHS.items():
file_name = os.path.basename(v)
midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
midas_urls = {
"dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
"midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
"midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
}
midas.api.load_model_inner = midas.api.load_model
def load_model_wrapper(model_type):
path = midas.api.ISL_PATHS[model_type]
if not os.path.exists(path):
if not os.path.exists(midas_path):
mkdir(midas_path)
print(f"Downloading midas model weights for {model_type} to {path}")
request.urlretrieve(midas_urls[model_type], path)
print(f"{model_type} downloaded")
return midas.api.load_model_inner(model_type)
midas.api.load_model = load_model_wrapper
def repair_config(sd_config):
if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
elif shared.cmd_opts.upcast_sampling:
sd_config.model.params.unet_config.params.use_fp16 = True
if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
# For UnCLIP-L, override the hardcoded karlo directory
if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
karlo_path = os.path.join(paths.models_path, 'karlo')
sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
class SdModelData:
def __init__(self):
self.sd_model = None
self.was_loaded_at_least_once = False
self.lock = threading.Lock()
def get_sd_model(self):
if self.was_loaded_at_least_once:
return self.sd_model
if self.sd_model is None:
with self.lock:
if self.sd_model is not None or self.was_loaded_at_least_once:
return self.sd_model
try:
load_model()
except Exception as e:
errors.display(e, "loading stable diffusion model")
print("", file=sys.stderr)
print("Stable diffusion model failed to load", file=sys.stderr)
self.sd_model = None
return self.sd_model
def set_sd_model(self, v):
self.sd_model = v
model_data = SdModelData()
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
if model_data.sd_model:
sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
model_data.sd_model = None
gc.collect()
devices.torch_gc()
do_inpainting_hijack()
timer = Timer()
if already_loaded_state_dict is not None:
state_dict = already_loaded_state_dict
else:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict
timer.record("find config")
sd_config = OmegaConf.load(checkpoint_config)
repair_config(sd_config)
timer.record("load config")
print(f"Creating model from config: {checkpoint_config}")
sd_model = None
try:
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd):
sd_model = instantiate_from_config(sd_config.model)
except Exception:
pass
if sd_model is None:
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
sd_model = instantiate_from_config(sd_config.model)
sd_model.used_config = checkpoint_config
timer.record("create model")
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
else:
sd_model.to(shared.device)
timer.record("move model to device")
sd_hijack.model_hijack.hijack(sd_model)
timer.record("hijack")
sd_model.eval()
model_data.sd_model = sd_model
model_data.was_loaded_at_least_once = True
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
timer.record("load textual inversion embeddings")
script_callbacks.model_loaded_callback(sd_model)
timer.record("scripts callbacks")
with devices.autocast(), torch.no_grad():
sd_model.cond_stage_model_empty_prompt = sd_model.cond_stage_model([""])
timer.record("calculate empty prompt")
print(f"Model loaded in {timer.summary()}.")
return sd_model
def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
if not sd_model:
sd_model = model_data.sd_model
if sd_model is None: # previous model load failed
current_checkpoint_info = None
else:
current_checkpoint_info = sd_model.sd_checkpoint_info
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
sd_unet.apply_unet("None")
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(sd_model)
timer = Timer()
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
timer.record("find config")
if sd_model is None or checkpoint_config != sd_model.used_config:
del sd_model
load_model(checkpoint_info, already_loaded_state_dict=state_dict)
return model_data.sd_model
try:
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
except Exception:
print("Failed to load checkpoint, restoring previous")
load_model_weights(sd_model, current_checkpoint_info, None, timer)
raise
finally:
sd_hijack.model_hijack.hijack(sd_model)
timer.record("hijack")
script_callbacks.model_loaded_callback(sd_model)
timer.record("script callbacks")
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
timer.record("move model to device")
print(f"Weights loaded in {timer.summary()}.")
return sd_model
def unload_model_weights(sd_model=None, info=None):
from modules import devices, sd_hijack
timer = Timer()
if model_data.sd_model:
model_data.sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
model_data.sd_model = None
sd_model = None
gc.collect()
devices.torch_gc()
torch.cuda.empty_cache()
print(f"Unloaded weights {timer.summary()}.")
return sd_model
def apply_token_merging(sd_model, token_merging_ratio):
"""
Applies speed and memory optimizations from tomesd.
"""
current_token_merging_ratio = getattr(sd_model, 'applied_token_merged_ratio', 0)
if current_token_merging_ratio == token_merging_ratio:
return
if current_token_merging_ratio > 0:
tomesd.remove_patch(sd_model)
if token_merging_ratio > 0:
tomesd.apply_patch(
sd_model,
ratio=token_merging_ratio,
use_rand=False, # can cause issues with some samplers
merge_attn=True,
merge_crossattn=False,
merge_mlp=False
)
sd_model.applied_token_merged_ratio = token_merging_ratio