91bfc71261
SD upscale moved to scripts Batch processing script removed Batch processing added to main img2img and now works with scripts img2img page UI reworked to use tabs
122 lines
4.6 KiB
Python
122 lines
4.6 KiB
Python
import math
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
import numpy as np
|
|
from PIL import Image, ImageOps, ImageChops
|
|
|
|
from modules import devices
|
|
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
|
from modules.shared import opts, state
|
|
import modules.shared as shared
|
|
import modules.processing as processing
|
|
from modules.ui import plaintext_to_html
|
|
import modules.images as images
|
|
import modules.scripts
|
|
|
|
|
|
def process_batch(p, input_dir, output_dir, args):
|
|
processing.fix_seed(p)
|
|
|
|
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
|
|
|
|
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
|
|
|
p.do_not_save_grid = True
|
|
p.do_not_save_samples = True
|
|
|
|
state.job_count = len(images) * p.n_iter
|
|
|
|
for i, image in enumerate(images):
|
|
state.job = f"{i+1} out of {len(images)}"
|
|
|
|
if state.interrupted:
|
|
break
|
|
|
|
img = Image.open(image)
|
|
p.init_images = [img] * p.batch_size
|
|
|
|
proc = modules.scripts.scripts_img2img.run(p, *args)
|
|
if proc is None:
|
|
proc = process_images(p)
|
|
|
|
for n, processed_image in enumerate(proc.images):
|
|
filename = os.path.basename(image)
|
|
|
|
if n > 0:
|
|
left, right = os.path.splitext(filename)
|
|
filename = f"{left}-{n}{right}"
|
|
|
|
processed_image.save(os.path.join(output_dir, filename))
|
|
|
|
|
|
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
|
|
is_inpaint = mode == 1
|
|
is_batch = mode == 2
|
|
|
|
if is_inpaint:
|
|
if mask_mode == 0:
|
|
image = init_img_with_mask['image']
|
|
mask = init_img_with_mask['mask']
|
|
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
|
|
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
|
|
image = image.convert('RGB')
|
|
else:
|
|
image = init_img_inpaint
|
|
mask = init_mask_inpaint
|
|
else:
|
|
image = init_img
|
|
mask = None
|
|
|
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
|
|
|
p = StableDiffusionProcessingImg2Img(
|
|
sd_model=shared.sd_model,
|
|
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
|
|
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
styles=[prompt_style, prompt_style2],
|
|
seed=seed,
|
|
subseed=subseed,
|
|
subseed_strength=subseed_strength,
|
|
seed_resize_from_h=seed_resize_from_h,
|
|
seed_resize_from_w=seed_resize_from_w,
|
|
seed_enable_extras=seed_enable_extras,
|
|
sampler_index=sampler_index,
|
|
batch_size=batch_size,
|
|
n_iter=n_iter,
|
|
steps=steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
restore_faces=restore_faces,
|
|
tiling=tiling,
|
|
init_images=[image],
|
|
mask=mask,
|
|
mask_blur=mask_blur,
|
|
inpainting_fill=inpainting_fill,
|
|
resize_mode=resize_mode,
|
|
denoising_strength=denoising_strength,
|
|
inpaint_full_res=inpaint_full_res,
|
|
inpaint_full_res_padding=inpaint_full_res_padding,
|
|
inpainting_mask_invert=inpainting_mask_invert,
|
|
)
|
|
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
|
|
|
p.extra_generation_params["Mask blur"] = mask_blur
|
|
|
|
if is_batch:
|
|
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, args)
|
|
|
|
processed = Processed(p, [], p.seed, "")
|
|
else:
|
|
processed = modules.scripts.scripts_img2img.run(p, *args)
|
|
if processed is None:
|
|
processed = process_images(p)
|
|
|
|
shared.total_tqdm.clear()
|
|
|
|
return processed.images, processed.js(), plaintext_to_html(processed.info)
|