WebUI/modules/textual_inversion/preprocess.py
captin411 abeec4b630
Add auto focal point cropping to Preprocess images
This algorithm plots a bunch of points of interest on the source
image and averages their locations to find a center.

Most points come from OpenCV.  One point comes from an
entropy model. OpenCV points account for 50% of the weight and the
entropy based point is the other 50%.

The center of all weighted points is calculated and a bounding box
is drawn as close to centered over that point as possible.
2022-10-19 03:18:26 -07:00

258 lines
7.6 KiB
Python

import os
import cv2
import numpy as np
from PIL import Image, ImageOps, ImageDraw
import platform
import sys
import tqdm
import time
from modules import shared, images
from modules.shared import opts, cmd_opts
if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False):
try:
if process_caption:
shared.interrogator.load()
if process_caption_deepbooru:
db_opts = deepbooru.create_deepbooru_opts()
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru, process_entropy_focus)
finally:
if process_caption:
shared.interrogator.send_blip_to_ram()
if process_caption_deepbooru:
deepbooru.release_process()
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False):
width = process_width
height = process_height
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
assert src != dst, 'same directory specified as source and destination'
os.makedirs(dst, exist_ok=True)
files = os.listdir(src)
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
def save_pic_with_caption(image, index):
caption = ""
if process_caption:
caption += shared.interrogator.generate_caption(image)
if process_caption_deepbooru:
if len(caption) > 0:
caption += ", "
caption += deepbooru.get_tags_from_process(image)
filename_part = filename
filename_part = os.path.splitext(filename_part)[0]
filename_part = os.path.basename(filename_part)
basename = f"{index:05}-{subindex[0]}-{filename_part}"
image.save(os.path.join(dst, f"{basename}.png"))
if len(caption) > 0:
with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption)
subindex[0] += 1
def save_pic(image, index):
save_pic_with_caption(image, index)
if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index)
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
filename = os.path.join(src, imagefile)
try:
img = Image.open(filename).convert("RGB")
except Exception:
continue
if shared.state.interrupted:
break
ratio = img.height / img.width
is_tall = ratio > 1.35
is_wide = ratio < 1 / 1.35
processing_option_ran = False
if process_split and is_tall:
img = img.resize((width, height * img.height // img.width))
top = img.crop((0, 0, width, height))
save_pic(top, index)
bot = img.crop((0, img.height - height, width, img.height))
save_pic(bot, index)
processing_option_ran = True
elif process_split and is_wide:
img = img.resize((width * img.width // img.height, height))
left = img.crop((0, 0, width, height))
save_pic(left, index)
right = img.crop((img.width - width, 0, img.width, height))
save_pic(right, index)
processing_option_ran = True
if process_entropy_focus and (is_tall or is_wide):
if is_tall:
img = img.resize((width, height * img.height // img.width))
else:
img = img.resize((width * img.width // img.height, height))
x_focal_center, y_focal_center = image_central_focal_point(img, width, height)
# take the focal point and turn it into crop coordinates that try to center over the focal
# point but then get adjusted back into the frame
y_half = int(height / 2)
x_half = int(width / 2)
x1 = x_focal_center - x_half
if x1 < 0:
x1 = 0
elif x1 + width > img.width:
x1 = img.width - width
y1 = y_focal_center - y_half
if y1 < 0:
y1 = 0
elif y1 + height > img.height:
y1 = img.height - height
x2 = x1 + width
y2 = y1 + height
crop = [x1, y1, x2, y2]
focal = img.crop(tuple(crop))
save_pic(focal, index)
processing_option_ran = True
if not processing_option_ran:
img = images.resize_image(1, img, width, height)
save_pic(img, index)
shared.state.nextjob()
def image_central_focal_point(im, target_width, target_height):
focal_points = []
focal_points.extend(
image_focal_points(im)
)
fp_entropy = image_entropy_point(im, target_width, target_height)
fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy
focal_points.append(fp_entropy)
weight = 0.0
x = 0.0
y = 0.0
for focal_point in focal_points:
weight += focal_point['weight']
x += focal_point['x'] * focal_point['weight']
y += focal_point['y'] * focal_point['weight']
avg_x = round(x // weight)
avg_y = round(y // weight)
return avg_x, avg_y
def image_focal_points(im):
grayscale = im.convert("L")
# naive attempt at preventing focal points from collecting at watermarks near the bottom
gd = ImageDraw.Draw(grayscale)
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
np_im = np.array(grayscale)
points = cv2.goodFeaturesToTrack(
np_im,
maxCorners=50,
qualityLevel=0.04,
minDistance=min(grayscale.width, grayscale.height)*0.05,
useHarrisDetector=False,
)
if points is None:
return []
focal_points = []
for point in points:
x, y = point.ravel()
focal_points.append({
'x': x,
'y': y,
'weight': 1.0
})
return focal_points
def image_entropy_point(im, crop_width, crop_height):
img = im.copy()
# just make it easier to slide the test crop with images oriented the same way
if (img.size[0] < img.size[1]):
portrait = True
img = img.rotate(90, expand=1)
e_max = 0
crop_current = [0, 0, crop_width, crop_height]
crop_best = crop_current
while crop_current[2] < img.size[0]:
crop = img.crop(tuple(crop_current))
e = image_entropy(crop)
if (e_max < e):
e_max = e
crop_best = list(crop_current)
crop_current[0] += 4
crop_current[2] += 4
x_mid = int((crop_best[2] - crop_best[0])/2)
y_mid = int((crop_best[3] - crop_best[1])/2)
return {
'x': x_mid,
'y': y_mid,
'weight': 1.0
}
def image_entropy(im):
# greyscale image entropy
band = np.asarray(im.convert("L"))
hist, _ = np.histogram(band, bins=range(0, 256))
hist = hist[hist > 0]
return -np.log2(hist / hist.sum()).sum()