d64b451681
added eta parameter to parameters output for generated images split eta settings into ancestral and ddim (because they have different default values)
150 lines
5.7 KiB
Python
150 lines
5.7 KiB
Python
# this scripts installs necessary requirements and launches main program in webui.py
|
|
|
|
import subprocess
|
|
import os
|
|
import sys
|
|
import importlib.util
|
|
import shlex
|
|
|
|
dir_repos = "repositories"
|
|
dir_tmp = "tmp"
|
|
|
|
python = sys.executable
|
|
git = os.environ.get('GIT', "git")
|
|
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
|
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
|
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
|
|
|
k_diffusion_package = os.environ.get('K_DIFFUSION_PACKAGE', "git+https://github.com/crowsonkb/k-diffusion.git@9e3002b7cd64df7870e08527b7664eb2f2f5f3f5")
|
|
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
|
|
|
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
|
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
|
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
|
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
|
ldsr_commit_hash = os.environ.get('LDSR_COMMIT_HASH', "abf33e7002d59d9085081bce93ec798dcabd49af")
|
|
|
|
args = shlex.split(commandline_args)
|
|
|
|
|
|
def extract_arg(args, name):
|
|
return [x for x in args if x != name], name in args
|
|
|
|
|
|
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
|
|
|
|
|
def repo_dir(name):
|
|
return os.path.join(dir_repos, name)
|
|
|
|
|
|
def run(command, desc=None, errdesc=None):
|
|
if desc is not None:
|
|
print(desc)
|
|
|
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
|
|
|
if result.returncode != 0:
|
|
|
|
message = f"""{errdesc or 'Error running command'}.
|
|
Command: {command}
|
|
Error code: {result.returncode}
|
|
stdout: {result.stdout.decode(encoding="utf8", errors="ignore") if len(result.stdout)>0 else '<empty>'}
|
|
stderr: {result.stderr.decode(encoding="utf8", errors="ignore") if len(result.stderr)>0 else '<empty>'}
|
|
"""
|
|
raise RuntimeError(message)
|
|
|
|
return result.stdout.decode(encoding="utf8", errors="ignore")
|
|
|
|
|
|
def run_python(code, desc=None, errdesc=None):
|
|
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
|
|
|
|
|
def run_pip(args, desc=None):
|
|
return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
|
|
|
|
|
def check_run(command):
|
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
|
return result.returncode == 0
|
|
|
|
|
|
def check_run_python(code):
|
|
return check_run(f'"{python}" -c "{code}"')
|
|
|
|
|
|
def is_installed(package):
|
|
try:
|
|
spec = importlib.util.find_spec(package)
|
|
except ModuleNotFoundError:
|
|
return False
|
|
|
|
return spec is not None
|
|
|
|
|
|
def git_clone(url, dir, name, commithash=None):
|
|
# TODO clone into temporary dir and move if successful
|
|
|
|
if os.path.exists(dir):
|
|
return
|
|
|
|
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
|
|
|
|
if commithash is not None:
|
|
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
|
|
|
|
|
|
try:
|
|
commit = run(f"{git} rev-parse HEAD").strip()
|
|
except Exception:
|
|
commit = "<none>"
|
|
|
|
print(f"Python {sys.version}")
|
|
print(f"Commit hash: {commit}")
|
|
|
|
|
|
if not is_installed("torch") or not is_installed("torchvision"):
|
|
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
|
|
|
|
if not skip_torch_cuda_test:
|
|
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
|
|
|
|
if not is_installed("k_diffusion.sampling"):
|
|
run_pip(f"install {k_diffusion_package}", "k-diffusion")
|
|
|
|
if not check_run_python("import k_diffusion; import inspect; assert 'eta' in inspect.signature(k_diffusion.sampling.sample_euler_ancestral).parameters"):
|
|
print(f"k-diffusion does not have 'eta' parameter; reinstalling latest version")
|
|
try:
|
|
run_pip(f"install --upgrade --force-reinstall {k_diffusion_package}", "k-diffusion")
|
|
except RuntimeError as e:
|
|
print(str(e))
|
|
|
|
if not is_installed("gfpgan"):
|
|
run_pip(f"install {gfpgan_package}", "gfpgan")
|
|
|
|
os.makedirs(dir_repos, exist_ok=True)
|
|
|
|
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
|
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
|
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
|
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
|
# Using my repo until my changes are merged, as this makes interfacing with our version of SD-web a lot easier
|
|
git_clone("https://github.com/Hafiidz/latent-diffusion", repo_dir('latent-diffusion'), "LDSR", ldsr_commit_hash)
|
|
|
|
if not is_installed("lpips"):
|
|
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
|
|
|
|
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
|
|
|
sys.argv += args
|
|
|
|
|
|
def start_webui():
|
|
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}")
|
|
import webui
|
|
webui.webui()
|
|
|
|
if __name__ == "__main__":
|
|
start_webui()
|